COMPARING GAUSSIAN AND EPANECHNIKOV KERNEL OF NONPARAMETRIC REGRESSION IN FORECASTING ISSI (INDONESIA SHARIA STOCK INDEX)

ISSI reflects the movement of sharia stock prices as a whole. It is necessary to forecast the share price to help investors determine whether the shares should be sold, bought, or retained. This study aims to predict the value of ISSI using nonparametric kernel regression. The kernel regression meth...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuniar Farida, Ida Purwanti, Nurissaidah Ulinnuha
Format: Article
Language:English
Published: Universitas Pattimura 2022-03-01
Series:Barekeng
Subjects:
Online Access:https://ojs3.unpatti.ac.id/index.php/barekeng/article/view/5127
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849407003923841024
author Yuniar Farida
Ida Purwanti
Nurissaidah Ulinnuha
author_facet Yuniar Farida
Ida Purwanti
Nurissaidah Ulinnuha
author_sort Yuniar Farida
collection DOAJ
description ISSI reflects the movement of sharia stock prices as a whole. It is necessary to forecast the share price to help investors determine whether the shares should be sold, bought, or retained. This study aims to predict the value of ISSI using nonparametric kernel regression. The kernel regression method is one of the nonparametric regression methods used to estimate conditional expectations using kernel functions. Kernel functions used in this study are gaussian and Epanechnikov kernel functions. The estimator used is the estimator Nadaraya-Watson. This study aims to compare the two kernel functions to predict the value of ISSI in the period from January 2016 to October 2019. The analysis results obtained the best method in predicting ISSI values, namely nonparametric kernel regression using Nadaraya-Watson estimator and Gaussian kernel function with the MAPE value of 15% and the coefficient of determination of 85%. Independent variables that significantly affect ISSI are interest rates, exchange rates, and inflation. Curve smoothing is done using bandwidth value (h) searched by the Silverman rule. The calculation result with the Silverman rule obtained a bandwidth value of 101832.7431.
format Article
id doaj-art-a9a4fa7de025483d9dbc8e73d6a112e0
institution Kabale University
issn 1978-7227
2615-3017
language English
publishDate 2022-03-01
publisher Universitas Pattimura
record_format Article
series Barekeng
spelling doaj-art-a9a4fa7de025483d9dbc8e73d6a112e02025-08-20T03:36:12ZengUniversitas PattimuraBarekeng1978-72272615-30172022-03-0116132333210.30598/barekengvol16iss1pp321-3305127COMPARING GAUSSIAN AND EPANECHNIKOV KERNEL OF NONPARAMETRIC REGRESSION IN FORECASTING ISSI (INDONESIA SHARIA STOCK INDEX)Yuniar Farida0Ida Purwanti1Nurissaidah Ulinnuha2Department of Mathematics, Science and Technology Faculty, UIN Sunan Ampel SurabayaDepartment of Mathematics, Science and Technology Faculty, UIN Sunan Ampel SurabayaDepartment of Mathematics, Science and Technology Faculty, UIN Sunan Ampel SurabayaISSI reflects the movement of sharia stock prices as a whole. It is necessary to forecast the share price to help investors determine whether the shares should be sold, bought, or retained. This study aims to predict the value of ISSI using nonparametric kernel regression. The kernel regression method is one of the nonparametric regression methods used to estimate conditional expectations using kernel functions. Kernel functions used in this study are gaussian and Epanechnikov kernel functions. The estimator used is the estimator Nadaraya-Watson. This study aims to compare the two kernel functions to predict the value of ISSI in the period from January 2016 to October 2019. The analysis results obtained the best method in predicting ISSI values, namely nonparametric kernel regression using Nadaraya-Watson estimator and Gaussian kernel function with the MAPE value of 15% and the coefficient of determination of 85%. Independent variables that significantly affect ISSI are interest rates, exchange rates, and inflation. Curve smoothing is done using bandwidth value (h) searched by the Silverman rule. The calculation result with the Silverman rule obtained a bandwidth value of 101832.7431.https://ojs3.unpatti.ac.id/index.php/barekeng/article/view/5127epanechnikov kernelgaussian kernelnadaraya-watson estimatornonparametric regressionissi
spellingShingle Yuniar Farida
Ida Purwanti
Nurissaidah Ulinnuha
COMPARING GAUSSIAN AND EPANECHNIKOV KERNEL OF NONPARAMETRIC REGRESSION IN FORECASTING ISSI (INDONESIA SHARIA STOCK INDEX)
Barekeng
epanechnikov kernel
gaussian kernel
nadaraya-watson estimator
nonparametric regression
issi
title COMPARING GAUSSIAN AND EPANECHNIKOV KERNEL OF NONPARAMETRIC REGRESSION IN FORECASTING ISSI (INDONESIA SHARIA STOCK INDEX)
title_full COMPARING GAUSSIAN AND EPANECHNIKOV KERNEL OF NONPARAMETRIC REGRESSION IN FORECASTING ISSI (INDONESIA SHARIA STOCK INDEX)
title_fullStr COMPARING GAUSSIAN AND EPANECHNIKOV KERNEL OF NONPARAMETRIC REGRESSION IN FORECASTING ISSI (INDONESIA SHARIA STOCK INDEX)
title_full_unstemmed COMPARING GAUSSIAN AND EPANECHNIKOV KERNEL OF NONPARAMETRIC REGRESSION IN FORECASTING ISSI (INDONESIA SHARIA STOCK INDEX)
title_short COMPARING GAUSSIAN AND EPANECHNIKOV KERNEL OF NONPARAMETRIC REGRESSION IN FORECASTING ISSI (INDONESIA SHARIA STOCK INDEX)
title_sort comparing gaussian and epanechnikov kernel of nonparametric regression in forecasting issi indonesia sharia stock index
topic epanechnikov kernel
gaussian kernel
nadaraya-watson estimator
nonparametric regression
issi
url https://ojs3.unpatti.ac.id/index.php/barekeng/article/view/5127
work_keys_str_mv AT yuniarfarida comparinggaussianandepanechnikovkernelofnonparametricregressioninforecastingissiindonesiashariastockindex
AT idapurwanti comparinggaussianandepanechnikovkernelofnonparametricregressioninforecastingissiindonesiashariastockindex
AT nurissaidahulinnuha comparinggaussianandepanechnikovkernelofnonparametricregressioninforecastingissiindonesiashariastockindex