COMPARING GAUSSIAN AND EPANECHNIKOV KERNEL OF NONPARAMETRIC REGRESSION IN FORECASTING ISSI (INDONESIA SHARIA STOCK INDEX)

ISSI reflects the movement of sharia stock prices as a whole. It is necessary to forecast the share price to help investors determine whether the shares should be sold, bought, or retained. This study aims to predict the value of ISSI using nonparametric kernel regression. The kernel regression meth...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuniar Farida, Ida Purwanti, Nurissaidah Ulinnuha
Format: Article
Language:English
Published: Universitas Pattimura 2022-03-01
Series:Barekeng
Subjects:
Online Access:https://ojs3.unpatti.ac.id/index.php/barekeng/article/view/5127
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ISSI reflects the movement of sharia stock prices as a whole. It is necessary to forecast the share price to help investors determine whether the shares should be sold, bought, or retained. This study aims to predict the value of ISSI using nonparametric kernel regression. The kernel regression method is one of the nonparametric regression methods used to estimate conditional expectations using kernel functions. Kernel functions used in this study are gaussian and Epanechnikov kernel functions. The estimator used is the estimator Nadaraya-Watson. This study aims to compare the two kernel functions to predict the value of ISSI in the period from January 2016 to October 2019. The analysis results obtained the best method in predicting ISSI values, namely nonparametric kernel regression using Nadaraya-Watson estimator and Gaussian kernel function with the MAPE value of 15% and the coefficient of determination of 85%. Independent variables that significantly affect ISSI are interest rates, exchange rates, and inflation. Curve smoothing is done using bandwidth value (h) searched by the Silverman rule. The calculation result with the Silverman rule obtained a bandwidth value of 101832.7431.
ISSN:1978-7227
2615-3017