LSTMConvSR: Joint Long–Short-Range Modeling via LSTM-First–CNN-Next Architecture for Remote Sensing Image Super-Resolution

The inability of existing super-resolution methods to jointly model short-range and long-range spatial dependencies in remote sensing imagery limits reconstruction efficacy. To address this, we propose LSTMConvSR, a novel framework inspired by top-down neural attention mechanisms. Our approach pione...

Full description

Saved in:
Bibliographic Details
Main Authors: Qiwei Zhu, Guojing Zhang, Xiaoying Wang, Jianqiang Huang
Format: Article
Language:English
Published: MDPI AG 2025-08-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/15/2745
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The inability of existing super-resolution methods to jointly model short-range and long-range spatial dependencies in remote sensing imagery limits reconstruction efficacy. To address this, we propose LSTMConvSR, a novel framework inspired by top-down neural attention mechanisms. Our approach pioneers an LSTM-first–CNN-next architecture. First, an LSTM-based global modeling stage efficiently captures long-range dependencies via downsampling and spatial attention, achieving 80.3% lower FLOPs and 11× faster speed. Second, a CNN-based local refinement stage, guided by the LSTM’s attention maps, enhances details in critical regions. Third, a top-down fusion stage dynamically integrates global context and local features to generate the output. Extensive experiments on Potsdam, UAVid, and RSSCN7 benchmarks demonstrate state-of-the-art performance, achieving 33.94 dB PSNR on Potsdam with 2.4× faster inference than MambaIRv2.
ISSN:2072-4292