LSTMConvSR: Joint Long–Short-Range Modeling via LSTM-First–CNN-Next Architecture for Remote Sensing Image Super-Resolution
The inability of existing super-resolution methods to jointly model short-range and long-range spatial dependencies in remote sensing imagery limits reconstruction efficacy. To address this, we propose LSTMConvSR, a novel framework inspired by top-down neural attention mechanisms. Our approach pione...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-08-01
|
| Series: | Remote Sensing |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-4292/17/15/2745 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The inability of existing super-resolution methods to jointly model short-range and long-range spatial dependencies in remote sensing imagery limits reconstruction efficacy. To address this, we propose LSTMConvSR, a novel framework inspired by top-down neural attention mechanisms. Our approach pioneers an LSTM-first–CNN-next architecture. First, an LSTM-based global modeling stage efficiently captures long-range dependencies via downsampling and spatial attention, achieving 80.3% lower FLOPs and 11× faster speed. Second, a CNN-based local refinement stage, guided by the LSTM’s attention maps, enhances details in critical regions. Third, a top-down fusion stage dynamically integrates global context and local features to generate the output. Extensive experiments on Potsdam, UAVid, and RSSCN7 benchmarks demonstrate state-of-the-art performance, achieving 33.94 dB PSNR on Potsdam with 2.4× faster inference than MambaIRv2. |
|---|---|
| ISSN: | 2072-4292 |