Anomaly Detection and Localization via Graph Learning

Phasor measurement units (PMUs) are being installed at an unprecedented rate on power systems, offering unique situation awareness capability. This paper presents a graph learning-based method for detecting and locating anomalies using PMU data. In this method, the graph learning technique is used t...

Full description

Saved in:
Bibliographic Details
Main Authors: Olabode Amusan, Di Wu
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/6/1475
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phasor measurement units (PMUs) are being installed at an unprecedented rate on power systems, offering unique situation awareness capability. This paper presents a graph learning-based method for detecting and locating anomalies using PMU data. In this method, the graph learning technique is used to characterize the spatiotemporal relationship of distributed PMU data by constructing a spatiotemporal graph. Then, graph analysis is used to detect and locate anomalies by evaluating the global connectivity of spatiotemporal graphs at different times and the local connectivity of nodes in the relevant spatiotemporal graphs. The proposed method was verified using the IEEE-39 bus system and realistic PMU data. The method accurately identifies anomalies with an accuracy of 97% with a precision and recall of 80% and 100%, respectively. The results show the superiority and robustness of the proposed method as a powerful tool for detecting and locating anomalies using PMU data.
ISSN:1996-1073