A Multi-Mode Active Control Method for the Hydropneumatic Suspension of Auxiliary Transport Vehicles in Underground Mines

Auxiliary transport vehicles are essential components of the underground mine auxiliary transportation system, primarily used for tasks such as personnel and material transportation. However, the underground environment is complex, and unstructured roads exhibit significant randomness. Traditional p...

Full description

Saved in:
Bibliographic Details
Main Authors: Jianjian Yang, Kangshuai Chen, Zhen Ding, Cong Zhao, Teng Zhang, Zhixiang Jiao
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/12/6871
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Auxiliary transport vehicles are essential components of the underground mine auxiliary transportation system, primarily used for tasks such as personnel and material transportation. However, the underground environment is complex, and unstructured roads exhibit significant randomness. Traditional passive hydropneumatic suspension systems struggle to strike a balance between ride comfort and stability, resulting in insufficient adaptability of auxiliary transport vehicles in such challenging underground conditions. To address this issue, this paper proposes a multi-mode hydropneumatic suspension control strategy based on the identification of road surface grades in underground mines. The strategy dynamically adjusts the controller’s parameters in real time according to the identified road surface grades, thereby enhancing vehicle adaptability in complex environments. First, the overall framework of the active suspension control system is constructed, and models of the hydropneumatic spring, vehicle dynamics, and road surface are developed. Then, a road surface grade identification method based on Long Short-Term Memory networks is proposed. Finally, a fuzzy-logic-based sliding mode controller is designed to dynamically map the road surface grade information to the controller’s parameters. Three control objectives are set for different road grades, and the multi-objective optimization of the sliding mode’s surface coefficients and fuzzy-logic-based rule parameters is performed using the Hiking Optimization Algorithm. This approach enables the adaptive adjustment of the suspension system under various road conditions. The simulations indicate that when contrasted with conventional inactive hydropneumatic suspensions, the proposed method reduces the sprung mass’s acceleration by 21.2%, 18.86%, and 17.44% on B-, D-, and F-grade roads, respectively, at a speed of 10 km/h. This significant reduction in the vibrational response validates the potential application of the proposed method in underground mine environments.
ISSN:2076-3417