MEMS-Based Micropacked Thermal Desorption GC/PID for In-Field Volatile Organic Compound Profiling from Hot Mix Asphalt
Background: In response to the growing demand for the real-time, in-field characterization of odorous anthropogenic emissions, this study develops and uses a MEMS-based micropacked thermal desorption Gas Chromatography system coupled with a PhotoIonization Detector (GC/PID) for Hot Mix Asphalt (HMA)...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Separations |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2297-8739/12/5/133 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Background: In response to the growing demand for the real-time, in-field characterization of odorous anthropogenic emissions, this study develops and uses a MEMS-based micropacked thermal desorption Gas Chromatography system coupled with a PhotoIonization Detector (GC/PID) for Hot Mix Asphalt (HMA) plant emissions. Methods: The innovative portable device, Pyxis GC, enables the high-sensitivity profiling of Volatile Organic Compounds (VOCs), particularly aldehydes and ketones, with sub-ppb detection limits using ambient air as the carrier gas. A comprehensive experimental design optimized the preconcentration parameters, resulting in an efficient, green analytical method evaluated via the Green Analytical Procedure Index (GAPI). Sorbent comparison showed quinoxaline-bridged cavitands outperform the conventional materials. Results and conclusions: The method was successfully deployed on site for source-specific sampling at an HMA plant, generating robust emission fingerprints. To assess environmental impact, a Generalized Additive Model (GAM) was developed, incorporating the process temperature and Sum of Odour Activity Values (SOAV) to predict odour concentrations. The model revealed a significant non-linear influence of temperature on emissions and validated its predictive capability despite the limited sample size. This integrated analytical–statistical approach demonstrates the utility of MEMS technology for real-time air quality assessment and odour dispersion modelling, offering a powerful tool for environmental monitoring and regulatory compliance. |
|---|---|
| ISSN: | 2297-8739 |