Association Between Oxidative Potential of Particulate Matter Collected by Personal Samplers and Systemic Inflammation Among Asthmatic and Non-Asthmatic Adults
With the rationale that the oxidative potential of particulate matter (PM-OP) may induce oxidative stress and inflammation, we conducted the ASTHMA-FENOP study in which 44 asthmatic patients and 37 matched controls wore a personal sampler for 24 h, allowing the collection of fine and coarse PM fract...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-11-01
|
| Series: | Antioxidants |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3921/13/12/1464 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | With the rationale that the oxidative potential of particulate matter (PM-OP) may induce oxidative stress and inflammation, we conducted the ASTHMA-FENOP study in which 44 asthmatic patients and 37 matched controls wore a personal sampler for 24 h, allowing the collection of fine and coarse PM fractions separately, to determine PM-OP by the dithiothreitol (DTT) and ascorbic acid (AA) methods. The levels of Interleukin 6 (IL-6) and the IL-6/IL-10 ratio, as indicators of pro- and anti-inflammatory statuses, were determined by calculating the mean differences (MDs), odds ratios (ORs) and p-trends adjusted for sex, age, study level and body mass index. Positive associations for IL-6 levels in the form of adjusted MDs and ORs were obtained for all PM-OP metrics, reaching statistical significance for both OP-DTT and OP-AA in the fine fraction, with adjusted OR = 5.66; 95%CI (1.46 to 21.92) and 3.32; 95%CI (1.07 to 10.35), respectively, along with statistically significant dose–response patterns when restricting to asthma and adjusted also for clinical variables (adjusted p-trend = 0.029 and 0.01). Similar or stronger associations and dose–response patterns were found for the IL-6/IL-10 ratio. In conclusion, our findings on the effect of PM-OP on systemic inflammation support that asthma is a heterogeneous disease at the molecular level, with PM-OP potentially playing an important role. |
|---|---|
| ISSN: | 2076-3921 |