Modified Autoencoder Training and Scoring for Robust Unsupervised Anomaly Detection in Deep Learning
The autoencoder (AE) is a fundamental deep learning approach to anomaly detection. AEs are trained on the assumption that abnormal inputs will produce higher reconstruction errors than normal ones. In practice, however, this assumption is unreliable in the unsupervised case, where the training data...
Saved in:
| Main Authors: | Nicholas Merrill, Azim Eskandarian |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2020-01-01
|
| Series: | IEEE Access |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/9099561/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
A cascaded autoencoder unmixing network for Hyperspectral anomaly detection
by: Kun Li, et al.
Published: (2025-02-01) -
Deep Autoencoders for Unsupervised Anomaly Detection in Wildfire Prediction
by: İrem Üstek, et al.
Published: (2024-11-01) -
Unsupervised Multivariate Time Series Data Anomaly Detection in Industrial IoT: A Confidence Adversarial Autoencoder Network
by: Jiahao Shan, et al.
Published: (2024-01-01) -
Improved anomaly diagnosis of production facilities by combining Autoencoder with spectral characteristics
by: Fuki SAKA, et al.
Published: (2025-03-01) -
Unsupervised Anomaly Detection With Variational Autoencoders Applied to Full‐Disk Solar Images
by: Marius Giger, et al.
Published: (2024-02-01)