CPLLM: Clinical prediction with large language models.

We present Clinical Prediction with Large Language Models (CPLLM), a method that involves fine-tuning a pre-trained Large Language Model (LLM) for predicting clinical disease and readmission. We utilized quantization and fine-tuned the LLM using prompts. For diagnostic predictions, we predicted whet...

Full description

Saved in:
Bibliographic Details
Main Authors: Ofir Ben Shoham, Nadav Rappoport
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2024-12-01
Series:PLOS Digital Health
Online Access:https://doi.org/10.1371/journal.pdig.0000680
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present Clinical Prediction with Large Language Models (CPLLM), a method that involves fine-tuning a pre-trained Large Language Model (LLM) for predicting clinical disease and readmission. We utilized quantization and fine-tuned the LLM using prompts. For diagnostic predictions, we predicted whether patients would be diagnosed with a target disease during their next visit or in the subsequent diagnosis, leveraging their historical medical records. We compared our results to various baselines, including Retain and Med-BERT, the latter of which is the current state-of-the-art model for disease prediction using temporal structured EHR data. In addition, we also evaluated CPLLM's utility in predicting hospital readmission and compared our method's performance with benchmark baselines. Our experiments ultimately revealed that our proposed method, CPLLM, surpasses all the tested models in terms of PR-AUC and ROC-AUC metrics, providing state-of-the-art performance as a tool for predicting disease diagnosis and patient hospital readmission without requiring pre-training on medical data. Such a method can be easily implemented and integrated into the clinical workflow to help care providers plan next steps for their patients.
ISSN:2767-3170