Multimodal Fusion Multi-Task Learning Network Based on Federated Averaging for SDB Severity Diagnosis

Accurate sleep staging and sleep-disordered breathing (SDB) severity prediction are critical for the early diagnosis and management of sleep disorders. However, real-world polysomnography (PSG) data often suffer from modality heterogeneity, label scarcity, and non-independent and identically distrib...

Full description

Saved in:
Bibliographic Details
Main Authors: Songlu Lin, Renzheng Tang, Yuzhe Wang, Zhihong Wang
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/14/8077
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate sleep staging and sleep-disordered breathing (SDB) severity prediction are critical for the early diagnosis and management of sleep disorders. However, real-world polysomnography (PSG) data often suffer from modality heterogeneity, label scarcity, and non-independent and identically distributed (non-IID) characteristics across institutions, posing significant challenges for model generalization and clinical deployment. To address these issues, we propose a federated multi-task learning (FMTL) framework that simultaneously performs sleep staging and SDB severity classification from seven multimodal physiological signals, including EEG, ECG, respiration, etc. The proposed framework is built upon a hybrid deep neural architecture that integrates convolutional layers (CNN) for spatial representation, bidirectional GRUs for temporal modeling, and multi-head self-attention for long-range dependency learning. A shared feature extractor is combined with task-specific heads to enable joint diagnosis, while the FedAvg algorithm is employed to facilitate decentralized training across multiple institutions without sharing raw data, thereby preserving privacy and addressing non-IID challenges. We evaluate the proposed method across three public datasets (APPLES, SHHS, and HMC) treated as independent clients. For sleep staging, the model achieves accuracies of 85.3% (APPLES), 87.1% (SHHS_rest), and 79.3% (HMC), with Cohen’s Kappa scores exceeding 0.71. For SDB severity classification, it obtains macro-F1 scores of 77.6%, 76.4%, and 79.1% on APPLES, SHHS_rest, and HMC, respectively. These results demonstrate that our unified FMTL framework effectively leverages multimodal PSG signals and federated training to deliver accurate and scalable sleep disorder assessment, paving the way for the development of a privacy-preserving, generalizable, and clinically applicable digital sleep monitoring system.
ISSN:2076-3417