Experimental Investigation of the Seepage-Induced Failure Process in Granular Soils

Seepage-induced failure may disable the bearing capacity of foundations in dams and embankments. However, the evolution mechanism of the seepage failure process in granular soils is not well understood. In this paper, a series of laboratory hydraulic tests were performed to investigate the seepage f...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu Wang, Xiangbao Duan, Yanchang Gu, Shijun Wang
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Geofluids
Online Access:http://dx.doi.org/10.1155/2022/5703151
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849397081238667264
author Yu Wang
Xiangbao Duan
Yanchang Gu
Shijun Wang
author_facet Yu Wang
Xiangbao Duan
Yanchang Gu
Shijun Wang
author_sort Yu Wang
collection DOAJ
description Seepage-induced failure may disable the bearing capacity of foundations in dams and embankments. However, the evolution mechanism of the seepage failure process in granular soils is not well understood. In this paper, a series of laboratory hydraulic tests were performed to investigate the seepage failure process in sandy gravels and fine-grained sands. Seepage behaviors of the hydraulic gradient, seepage flow velocity, and permeability coefficient were observed, and then, the Reynolds number was obtained to describe the seepage regime. By linking the hydraulic gradients with the Reynolds number, the seepage failure process was quantitatively divided into four phases: (i) incubation (Re<0.85), (ii) formation (0.85≤Re≤5), (iii) evolution (5<Re≤50), and (iv) destruction (50<Re). The findings of the study identified an approximately linear relationship between the hydraulic gradient and the seepage velocity in the phases of incubation and formation in which the viscous drag effects are not negligible, corroborating Darcy’s view. However, in the phases of evolution and destruction, the hydraulic gradient and the seepage velocity are nonlinearly related, indicating that the inertial force plays a leading role, and the quadratic equation is relevant for the regime transition from laminar flow to turbulent flow. Finally, the mechanism of each phase in the seepage failure process was clarified. Fine content and uniformity coefficient are internal factors that affect the potential of seepage failure, while the seepage force that drives the transport of fine particles is an underlying cause that promotes the development of seepage failure. This study will be quite useful in identifying the limits of applicability of the well-known “Darcy’s law,” in further improving the physical modelling associated with fluid flow through granular soils.
format Article
id doaj-art-a8b3f1fb4761441d8bbd393311159e11
institution Kabale University
issn 1468-8123
language English
publishDate 2022-01-01
publisher Wiley
record_format Article
series Geofluids
spelling doaj-art-a8b3f1fb4761441d8bbd393311159e112025-08-20T03:39:09ZengWileyGeofluids1468-81232022-01-01202210.1155/2022/5703151Experimental Investigation of the Seepage-Induced Failure Process in Granular SoilsYu Wang0Xiangbao Duan1Yanchang Gu2Shijun Wang3College of Architectural EngineeringNanjing Hydraulic Research InstituteNanjing Hydraulic Research InstituteNanjing Hydraulic Research InstituteSeepage-induced failure may disable the bearing capacity of foundations in dams and embankments. However, the evolution mechanism of the seepage failure process in granular soils is not well understood. In this paper, a series of laboratory hydraulic tests were performed to investigate the seepage failure process in sandy gravels and fine-grained sands. Seepage behaviors of the hydraulic gradient, seepage flow velocity, and permeability coefficient were observed, and then, the Reynolds number was obtained to describe the seepage regime. By linking the hydraulic gradients with the Reynolds number, the seepage failure process was quantitatively divided into four phases: (i) incubation (Re<0.85), (ii) formation (0.85≤Re≤5), (iii) evolution (5<Re≤50), and (iv) destruction (50<Re). The findings of the study identified an approximately linear relationship between the hydraulic gradient and the seepage velocity in the phases of incubation and formation in which the viscous drag effects are not negligible, corroborating Darcy’s view. However, in the phases of evolution and destruction, the hydraulic gradient and the seepage velocity are nonlinearly related, indicating that the inertial force plays a leading role, and the quadratic equation is relevant for the regime transition from laminar flow to turbulent flow. Finally, the mechanism of each phase in the seepage failure process was clarified. Fine content and uniformity coefficient are internal factors that affect the potential of seepage failure, while the seepage force that drives the transport of fine particles is an underlying cause that promotes the development of seepage failure. This study will be quite useful in identifying the limits of applicability of the well-known “Darcy’s law,” in further improving the physical modelling associated with fluid flow through granular soils.http://dx.doi.org/10.1155/2022/5703151
spellingShingle Yu Wang
Xiangbao Duan
Yanchang Gu
Shijun Wang
Experimental Investigation of the Seepage-Induced Failure Process in Granular Soils
Geofluids
title Experimental Investigation of the Seepage-Induced Failure Process in Granular Soils
title_full Experimental Investigation of the Seepage-Induced Failure Process in Granular Soils
title_fullStr Experimental Investigation of the Seepage-Induced Failure Process in Granular Soils
title_full_unstemmed Experimental Investigation of the Seepage-Induced Failure Process in Granular Soils
title_short Experimental Investigation of the Seepage-Induced Failure Process in Granular Soils
title_sort experimental investigation of the seepage induced failure process in granular soils
url http://dx.doi.org/10.1155/2022/5703151
work_keys_str_mv AT yuwang experimentalinvestigationoftheseepageinducedfailureprocessingranularsoils
AT xiangbaoduan experimentalinvestigationoftheseepageinducedfailureprocessingranularsoils
AT yanchanggu experimentalinvestigationoftheseepageinducedfailureprocessingranularsoils
AT shijunwang experimentalinvestigationoftheseepageinducedfailureprocessingranularsoils