Evolution of an Artificial Intelligence-Powered Application for Mammography
<b>Background:</b> The implementation of radiological artificial intelligence (AI) solutions remains challenging due to limitations in existing testing methodologies. This study assesses the efficacy of a comprehensive methodology for performance testing and monitoring of commercial-grad...
Saved in:
| Main Authors: | Yuriy Vasilev, Denis Rumyantsev, Anton Vladzymyrskyy, Olga Omelyanskaya, Lev Pestrenin, Igor Shulkin, Evgeniy Nikitin, Artem Kapninskiy, Kirill Arzamasov |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Diagnostics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-4418/15/7/822 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Limitations of using artificial intelligence services to analyze chest x-ray imaging
by: Yuriy A. Vasilev, et al.
Published: (2024-12-01) -
AQMI: Software for assessing the quality of mammographic images
by: Arthur Dantas Mangussi, et al.
Published: (2023-07-01) -
Aplicabilidade da Lei do Inverso do Quadrado da Dis-tância em radiologia convencional e mamografia
by: Nathan Willig Lima, et al.
Published: (2015-05-01) -
Avaliação da qualidade da imagem e da Dose Glandular Média em Mamografia Digital.
by: Nathan Willig Lima, et al.
Published: (2015-05-01) -
Impacto da pureza dos filtros de alumínio no valor de Camada Semi-Redutora em radiologia convencional e mamografia
by: Nathan Lima, et al.
Published: (2016-03-01)