Precipitation Retrieval from Geostationary Satellite Data Based on a New QPE Algorithm

A new quantitative precipitation estimation (QPE) method for Himawari-9 (H9) and Fengyun-4B (FY4B) satellites has been developed based on cloud top brightness temperature (TBB). The 24-hour, 6-hour, and hourly rainfall estimates of H9 and FY4B have been compared with rain gauge datasets and precipit...

Full description

Saved in:
Bibliographic Details
Main Authors: Hao Chen, Zifeng Yu, Robert Rogers, Yilin Yang
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/10/1703
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new quantitative precipitation estimation (QPE) method for Himawari-9 (H9) and Fengyun-4B (FY4B) satellites has been developed based on cloud top brightness temperature (TBB). The 24-hour, 6-hour, and hourly rainfall estimates of H9 and FY4B have been compared with rain gauge datasets and precipitation estimation data from the GPM IMERG V07 (IMERG) and Global Precipitation Satellite (GSMaP) products, especially based on the case study of landfalling super typhoon “Doksuri” in 2023. The results indicate that the bias-corrected QPE algorithm substantially improves precipitation estimation accuracy across multiple temporal scales and intensity categories. For extreme precipitation events (≥100 mm/day), the FY4B-based estimates exhibit markedly better performance. Furthermore, in light-to-moderate rainfall (0.1–24.9 mm/day) and heavy rain to rainstorm ranges (25.0–99.9 mm/day), its retrievals are largely comparable to those from IMERG and GSMaP, demonstrating robust consistency across varying precipitation intensities. Therefore, the new QPE retrieval algorithm in this study could largely improve the accuracy and reliability of satellite precipitation estimation for extreme weather events such as typhoons.
ISSN:2072-4292