Generative Adversarial Network for Damage Identification in Civil Structures

In recent years, many efforts have been made to develop efficient deep-learning-based structural health monitoring (SHM) methods. Most of the proposed methods employ supervised algorithms that require data from different damaged states of a structure in order to monitor its health conditions. As suc...

Full description

Saved in:
Bibliographic Details
Main Authors: Zahra Rastin, Gholamreza Ghodrati Amiri, Ehsan Darvishan
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2021/3987835
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, many efforts have been made to develop efficient deep-learning-based structural health monitoring (SHM) methods. Most of the proposed methods employ supervised algorithms that require data from different damaged states of a structure in order to monitor its health conditions. As such data are not usually available for real civil structures, using supervised algorithms for the health monitoring of these structures might be impracticable. This paper presents a novel two-stage technique based on generative adversarial networks (GANs) for unsupervised SHM and damage identification. In the first stage, a deep convolutional GAN (DCGAN) is used to detect and quantify structural damages; the detected damages are then localized in the second stage using a conditional GAN (CGAN). Raw acceleration signals from a monitored structure are used for this purpose, and the networks are trained by only the intact state data of the structure. The proposed method is validated through applications on the numerical model of a bridge health monitoring (BHM) benchmark structure, an experimental steel structure located at Qatar University, and the full-scale Tianjin Yonghe Bridge.
ISSN:1070-9622
1875-9203