The Milky Way Radial Metallicity Gradient as an Equilibrium Phenomenon: Why Old Stars Are Metal Rich

Metallicities of both gas and stars decline toward large radii in spiral galaxies, a trend known as the radial metallicity gradient. We quantify the evolution of the metallicity gradient in the Milky Way as traced by APOGEE red giants with age estimates from machine learning algorithms. Stars up to...

Full description

Saved in:
Bibliographic Details
Main Authors: James W. Johnson, David H. Weinberg, Guillermo A. Blanc, Ana Bonaca, Gwen C. Rudie, Yuxi (Lucy) Lu, Bronwyn Reichardt Chu, Emily J. Griffith, Tawny Sit, Jennifer A. Johnson, Liam O. Dubay, Miqaela K. Weller, Daniel A. Boyea, Jonathan C. Bird
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/addbe5
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849428164221075456
author James W. Johnson
David H. Weinberg
Guillermo A. Blanc
Ana Bonaca
Gwen C. Rudie
Yuxi (Lucy) Lu
Bronwyn Reichardt Chu
Emily J. Griffith
Tawny Sit
Jennifer A. Johnson
Liam O. Dubay
Miqaela K. Weller
Daniel A. Boyea
Jonathan C. Bird
author_facet James W. Johnson
David H. Weinberg
Guillermo A. Blanc
Ana Bonaca
Gwen C. Rudie
Yuxi (Lucy) Lu
Bronwyn Reichardt Chu
Emily J. Griffith
Tawny Sit
Jennifer A. Johnson
Liam O. Dubay
Miqaela K. Weller
Daniel A. Boyea
Jonathan C. Bird
author_sort James W. Johnson
collection DOAJ
description Metallicities of both gas and stars decline toward large radii in spiral galaxies, a trend known as the radial metallicity gradient. We quantify the evolution of the metallicity gradient in the Milky Way as traced by APOGEE red giants with age estimates from machine learning algorithms. Stars up to ages of ∼9 Gyr follow a similar relation between metallicity and Galactocentric radius. This constancy challenges current models of Galactic chemical evolution, which typically predict lower metallicities for older stellar populations. Our results favor an equilibrium scenario , in which the gas-phase gradient reaches a nearly constant normalization early in the disk lifetime. Using a fiducial choice of parameters, we demonstrate that one possible origin of this behavior is an outflow that more readily ejects gas from the interstellar medium (ISM) with increasing Galactocentric radius. A direct effect of the outflow is that baryons do not remain in the ISM for long, which causes the ratio of star formation to accretion, ${\dot{{\rm{\Sigma }}}}_{\star }/{\dot{{\rm{\Sigma }}}}_{\,\rm{in}\,}$ , to quickly become constant. This ratio is closely related to the local equilibrium metallicity, since its numerator and denominator set the rates of metal production by stars and hydrogen gained through accretion, respectively. Building in a merger event results in a perturbation that evolves back toward the equilibrium state on ∼Gyr timescales. Under the equilibrium scenario, the radial metallicity gradient is not a consequence of the inside-out growth of the disk but instead reflects a trend of declining ${\dot{{\rm{\Sigma }}}}_{\star }/{\dot{{\rm{\Sigma }}}}_{\,\rm{in}\,}$ with increasing Galactocentric radius.
format Article
id doaj-art-a84f1bbd22344edaa14f431019441bd2
institution Kabale University
issn 1538-4357
language English
publishDate 2025-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal
spelling doaj-art-a84f1bbd22344edaa14f431019441bd22025-08-20T03:28:47ZengIOP PublishingThe Astrophysical Journal1538-43572025-01-019881810.3847/1538-4357/addbe5The Milky Way Radial Metallicity Gradient as an Equilibrium Phenomenon: Why Old Stars Are Metal RichJames W. Johnson0https://orcid.org/0000-0002-6534-8783David H. Weinberg1https://orcid.org/0000-0001-7775-7261Guillermo A. Blanc2https://orcid.org/0000-0003-4218-3944Ana Bonaca3https://orcid.org/0000-0002-7846-9787Gwen C. Rudie4https://orcid.org/0000-0002-8459-5413Yuxi (Lucy) Lu5https://orcid.org/0000-0003-4769-3273Bronwyn Reichardt Chu6https://orcid.org/0000-0002-7187-8561Emily J. Griffith7https://orcid.org/0000-0001-9345-9977Tawny Sit8https://orcid.org/0000-0001-8208-9755Jennifer A. Johnson9https://orcid.org/0000-0001-7258-1834Liam O. Dubay10https://orcid.org/0000-0003-3781-0747Miqaela K. Weller11https://orcid.org/0000-0003-4912-5157Daniel A. Boyea12https://orcid.org/0009-0008-8903-160XJonathan C. Bird13https://orcid.org/0000-0001-5838-5212Carnegie Science Observatories , 813 Santa Barbara Street, Pasadena, CA 91101, USA ; jjohnson10@carnegiescience.edu; Department of Astronomy, The Ohio State University , 140 W. 18th Avenue, Columbus, OH 43210, USA; Center for Cosmology & Astroparticle Physics (CCAPP), The Ohio State University , 191 W. Woodruff Avenue, Columbus, OH 43210, USADepartment of Astronomy, The Ohio State University , 140 W. 18th Avenue, Columbus, OH 43210, USA; Center for Cosmology & Astroparticle Physics (CCAPP), The Ohio State University , 191 W. Woodruff Avenue, Columbus, OH 43210, USACarnegie Science Observatories , 813 Santa Barbara Street, Pasadena, CA 91101, USA ; jjohnson10@carnegiescience.edu; Departamento de Astronomía, Universidad de Chile , Camino El Observatorio 1515, Santiago, ChileCarnegie Science Observatories , 813 Santa Barbara Street, Pasadena, CA 91101, USA ; jjohnson10@carnegiescience.eduCarnegie Science Observatories , 813 Santa Barbara Street, Pasadena, CA 91101, USA ; jjohnson10@carnegiescience.eduDepartment of Astronomy, The Ohio State University , 140 W. 18th Avenue, Columbus, OH 43210, USA; American Museum of Natural History , 200 Central Park West, New York, NY 10024, USACentre for Extragalactic Astronomy, Department of Physics, Durham University , South Road, Durham DH1 3LE, UK; Institute for Computational Cosmology, Department of Physics, Durham University , South Road, Durham DH1 3LE, UKCenter for Astrophysics & Space Astronomy, Department of Astrophysical and Planetary Sciences, University of Colorado , 389 UCB, Boulder, CO 80309, USADepartment of Astronomy, The Ohio State University , 140 W. 18th Avenue, Columbus, OH 43210, USA; Center for Cosmology & Astroparticle Physics (CCAPP), The Ohio State University , 191 W. Woodruff Avenue, Columbus, OH 43210, USADepartment of Astronomy, The Ohio State University , 140 W. 18th Avenue, Columbus, OH 43210, USA; Center for Cosmology & Astroparticle Physics (CCAPP), The Ohio State University , 191 W. Woodruff Avenue, Columbus, OH 43210, USADepartment of Astronomy, The Ohio State University , 140 W. 18th Avenue, Columbus, OH 43210, USA; Center for Cosmology & Astroparticle Physics (CCAPP), The Ohio State University , 191 W. Woodruff Avenue, Columbus, OH 43210, USADepartment of Astronomy, The Ohio State University , 140 W. 18th Avenue, Columbus, OH 43210, USA; Center for Cosmology & Astroparticle Physics (CCAPP), The Ohio State University , 191 W. Woodruff Avenue, Columbus, OH 43210, USADepartment of Physics & Astronomy, University of Victoria , 3800 Finnerty Road, Victoria, BC V8P 5C2, CanadaDepartment of Physics & Astronomy, Vanderbilt University , 2301 Vanderbilt Place, Nashville, TN 37235, USAMetallicities of both gas and stars decline toward large radii in spiral galaxies, a trend known as the radial metallicity gradient. We quantify the evolution of the metallicity gradient in the Milky Way as traced by APOGEE red giants with age estimates from machine learning algorithms. Stars up to ages of ∼9 Gyr follow a similar relation between metallicity and Galactocentric radius. This constancy challenges current models of Galactic chemical evolution, which typically predict lower metallicities for older stellar populations. Our results favor an equilibrium scenario , in which the gas-phase gradient reaches a nearly constant normalization early in the disk lifetime. Using a fiducial choice of parameters, we demonstrate that one possible origin of this behavior is an outflow that more readily ejects gas from the interstellar medium (ISM) with increasing Galactocentric radius. A direct effect of the outflow is that baryons do not remain in the ISM for long, which causes the ratio of star formation to accretion, ${\dot{{\rm{\Sigma }}}}_{\star }/{\dot{{\rm{\Sigma }}}}_{\,\rm{in}\,}$ , to quickly become constant. This ratio is closely related to the local equilibrium metallicity, since its numerator and denominator set the rates of metal production by stars and hydrogen gained through accretion, respectively. Building in a merger event results in a perturbation that evolves back toward the equilibrium state on ∼Gyr timescales. Under the equilibrium scenario, the radial metallicity gradient is not a consequence of the inside-out growth of the disk but instead reflects a trend of declining ${\dot{{\rm{\Sigma }}}}_{\star }/{\dot{{\rm{\Sigma }}}}_{\,\rm{in}\,}$ with increasing Galactocentric radius.https://doi.org/10.3847/1538-4357/addbe5Galaxy chemical evolutionMilky Way diskMilky Way evolutionChemical enrichmentChemical abundancesGalactic winds
spellingShingle James W. Johnson
David H. Weinberg
Guillermo A. Blanc
Ana Bonaca
Gwen C. Rudie
Yuxi (Lucy) Lu
Bronwyn Reichardt Chu
Emily J. Griffith
Tawny Sit
Jennifer A. Johnson
Liam O. Dubay
Miqaela K. Weller
Daniel A. Boyea
Jonathan C. Bird
The Milky Way Radial Metallicity Gradient as an Equilibrium Phenomenon: Why Old Stars Are Metal Rich
The Astrophysical Journal
Galaxy chemical evolution
Milky Way disk
Milky Way evolution
Chemical enrichment
Chemical abundances
Galactic winds
title The Milky Way Radial Metallicity Gradient as an Equilibrium Phenomenon: Why Old Stars Are Metal Rich
title_full The Milky Way Radial Metallicity Gradient as an Equilibrium Phenomenon: Why Old Stars Are Metal Rich
title_fullStr The Milky Way Radial Metallicity Gradient as an Equilibrium Phenomenon: Why Old Stars Are Metal Rich
title_full_unstemmed The Milky Way Radial Metallicity Gradient as an Equilibrium Phenomenon: Why Old Stars Are Metal Rich
title_short The Milky Way Radial Metallicity Gradient as an Equilibrium Phenomenon: Why Old Stars Are Metal Rich
title_sort milky way radial metallicity gradient as an equilibrium phenomenon why old stars are metal rich
topic Galaxy chemical evolution
Milky Way disk
Milky Way evolution
Chemical enrichment
Chemical abundances
Galactic winds
url https://doi.org/10.3847/1538-4357/addbe5
work_keys_str_mv AT jameswjohnson themilkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT davidhweinberg themilkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT guillermoablanc themilkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT anabonaca themilkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT gwencrudie themilkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT yuxilucylu themilkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT bronwynreichardtchu themilkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT emilyjgriffith themilkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT tawnysit themilkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT jenniferajohnson themilkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT liamodubay themilkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT miqaelakweller themilkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT danielaboyea themilkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT jonathancbird themilkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT jameswjohnson milkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT davidhweinberg milkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT guillermoablanc milkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT anabonaca milkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT gwencrudie milkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT yuxilucylu milkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT bronwynreichardtchu milkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT emilyjgriffith milkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT tawnysit milkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT jenniferajohnson milkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT liamodubay milkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT miqaelakweller milkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT danielaboyea milkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich
AT jonathancbird milkywayradialmetallicitygradientasanequilibriumphenomenonwhyoldstarsaremetalrich