First-Principles Study on Influences of Crystal Structure and Orientation on Band Offsets at the CdS/Cu2ZnSnS4 Interface

Cu2ZnSnS4 (CZTS) has attracted much attention recently as an absorber layer material in a heterojunction solar cell. Using the first-principles method, we calculate the band offsets for the CdS/CZTS heterojunction. The valence band offset is 1.2 eV for the (001) CdS/CZTS heterointerface and 1.0 eV...

Full description

Saved in:
Bibliographic Details
Main Authors: Wujisiguleng Bao, Masaya Ichimura
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/2012/619812
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cu2ZnSnS4 (CZTS) has attracted much attention recently as an absorber layer material in a heterojunction solar cell. Using the first-principles method, we calculate the band offsets for the CdS/CZTS heterojunction. The valence band offset is 1.2 eV for the (001) CdS/CZTS heterointerface and 1.0 eV for the (010) heterointerface, when CZTS is considered to crystallize in the kesterite structure. When CZTS is considered to crystallize in the stannite structure,  eV for the (001) heterointerface and  eV for the (010) heterointerface. In any case, the conduction band minimum of CZTS is higher than that of CdS, and the conduction band offset is in a range between 0.1 and 0.4 eV.
ISSN:1110-662X
1687-529X