Multi-Channel Replay Speech Detection Using an Adaptive Learnable Beamformer
Replay attacks belong to the class of severe threats against voice-controlled systems, exploiting the easy accessibility of speech signals by recorded and replayed speech to grant unauthorized access to sensitive data. In this work, we propose a multi-channel neural network architecture called M-ALR...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2025-01-01
|
| Series: | IEEE Open Journal of Signal Processing |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/10994395/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Replay attacks belong to the class of severe threats against voice-controlled systems, exploiting the easy accessibility of speech signals by recorded and replayed speech to grant unauthorized access to sensitive data. In this work, we propose a multi-channel neural network architecture called M-ALRAD for the detection of replay attacks based on spatial audio features. This approach integrates a learnable adaptive beamformer with a convolutional recurrent neural network, allowing for joint optimization of spatial filtering and classification. Experiments have been carried out on the ReMASC dataset, which is a state-of-the-art multi-channel replay speech detection dataset encompassing four microphones with diverse array configurations and four environments. Results on the ReMASC dataset show the superiority of the approach compared to the state-of-the-art and yield substantial improvements for challenging acoustic environments. In addition, we demonstrate that our approach is able to better generalize to unseen environments with respect to prior studies. |
|---|---|
| ISSN: | 2644-1322 |