Extending the Self-Discharge Time of Dicke Quantum Batteries Using Molecular Triplets
Quantum batteries, quantum systems for energy storage, have gained interest due to their potential scalable charging power density. A quantum battery proposal based on the Dicke model has been explored using organic microcavities, which enable a cavity-enhanced energy-transfer process called superab...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
American Physical Society
2025-06-01
|
| Series: | PRX Energy |
| Online Access: | http://doi.org/10.1103/bhyh-53np |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Quantum batteries, quantum systems for energy storage, have gained interest due to their potential scalable charging power density. A quantum battery proposal based on the Dicke model has been explored using organic microcavities, which enable a cavity-enhanced energy-transfer process called superabsorption. However, energy-storage lifetime in these devices is limited by fast radiative emission losses, worsened by superradiance. Here, we demonstrate a promising approach to extend the energy-storage lifetime of Dicke quantum batteries using molecular triplet states. We examine a type of multilayer microcavity where an active absorption layer transfers energy to the molecular triplets of a storage layer, identifying two regimes based on exciton-polariton resonances. We tested one of these mechanisms by fabricating and characterizing five devices across a triplet-polariton resonance, showing that triplet population is maximized when the lower polariton and triplet state are isoenergetic. We found that one of these devices can store energy for 40.3 ± 0.4 μs, a 10^{3}-fold increase in storage time compared to previous demonstrations. We conclude by discussing potential optimization outlooks for this class of devices. |
|---|---|
| ISSN: | 2768-5608 |