A Joint LiDAR and Camera Calibration Algorithm Based on an Original 3D Calibration Plate

An accurate extrinsic calibration between LiDAR and cameras is essential for effective sensor fusion, directly impacting the perception capabilities of autonomous driving systems. Although prior calibration approaches using planar and point features have yielded some success, they suffer from inhere...

Full description

Saved in:
Bibliographic Details
Main Authors: Ziyang Cui, Yi Wang, Xiaodong Chen, Huaiyu Cai
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/15/4558
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An accurate extrinsic calibration between LiDAR and cameras is essential for effective sensor fusion, directly impacting the perception capabilities of autonomous driving systems. Although prior calibration approaches using planar and point features have yielded some success, they suffer from inherent limitations. Specifically, methods that rely on fitting planar contours using depth-discontinuous points are prone to systematic errors, which hinder the precise extraction of the 3D positions of feature points. This, in turn, compromises the accuracy and robustness of the calibration. To overcome these challenges, this paper introduces a novel 3D calibration plate incorporating the gradient depth, localization markers, and corner features. At the point cloud level, the gradient depth enables the accurate estimation of the 3D coordinates of feature points. At the image level, corner features and localization markers facilitate the rapid and precise acquisition of 2D pixel coordinates, with minimal interference from environmental noise. This method establishes a rigorous and systematic framework to enhance the accuracy of LiDAR–camera extrinsic calibrations. In a simulated environment, experimental results demonstrate that the proposed algorithm achieves a rotation error below 0.002 radians and a translation error below 0.005 m.
ISSN:1424-8220