Chaotic behaviour of the Earth System in the Anthropocene
It is shown that the Earth System (ES) can, due to the impact of human activities, behave in a chaotic fashion. Our arguments are based on the assumption that the ES can be described by a Landau–Ginzburg model, which on its own allows for predicting that the ES evolves, through regular trajectories...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2025-01-01
|
Series: | Evolving Earth |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2950117225000044 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It is shown that the Earth System (ES) can, due to the impact of human activities, behave in a chaotic fashion. Our arguments are based on the assumption that the ES can be described by a Landau–Ginzburg model, which on its own allows for predicting that the ES evolves, through regular trajectories in the phase space, towards a Hothouse Earth scenario for a finite amount of human-driven impact. Furthermore, we find that the equilibrium point for temperature fluctuations can exhibit bifurcations and a chaotic pattern if the human impact follows a logistic map. Our final analysis includes interactions between different terms of the planetary boundaries (PB) in order to gauge the predictability of our model. |
---|---|
ISSN: | 2950-1172 |