On a Class of Integrals Involving a Bessel Function Times Gegenbauer Polynomials

We provide information and explicit formulae for a class of integrals involving Bessel functions and Gegenbauer polynomials. We present a simple proof of an old formula of Gegenbauer. Some interesting special cases and applications of this result are obtained. In particular, we give a short proof of...

Full description

Saved in:
Bibliographic Details
Main Author: Stamatis Koumandos
Format: Article
Language:English
Published: Wiley 2007-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2007/73750
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850168573957242880
author Stamatis Koumandos
author_facet Stamatis Koumandos
author_sort Stamatis Koumandos
collection DOAJ
description We provide information and explicit formulae for a class of integrals involving Bessel functions and Gegenbauer polynomials. We present a simple proof of an old formula of Gegenbauer. Some interesting special cases and applications of this result are obtained. In particular, we give a short proof of a recent result of A. A. R. Neves et al. regarding the analytical evaluation of an integral of a Bessel function times associated Legendre functions. These integrals arise in problems of vector diffraction in electromagnetic theory.
format Article
id doaj-art-a7cc67f58f5e4a789e7067a760a7a91f
institution OA Journals
issn 0161-1712
1687-0425
language English
publishDate 2007-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-a7cc67f58f5e4a789e7067a760a7a91f2025-08-20T02:20:56ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252007-01-01200710.1155/2007/7375073750On a Class of Integrals Involving a Bessel Function Times Gegenbauer PolynomialsStamatis Koumandos0Department of Mathematics and Statistics, University of Cyprus, P. O. Box 20537, Nicosia 1678, CyprusWe provide information and explicit formulae for a class of integrals involving Bessel functions and Gegenbauer polynomials. We present a simple proof of an old formula of Gegenbauer. Some interesting special cases and applications of this result are obtained. In particular, we give a short proof of a recent result of A. A. R. Neves et al. regarding the analytical evaluation of an integral of a Bessel function times associated Legendre functions. These integrals arise in problems of vector diffraction in electromagnetic theory.http://dx.doi.org/10.1155/2007/73750
spellingShingle Stamatis Koumandos
On a Class of Integrals Involving a Bessel Function Times Gegenbauer Polynomials
International Journal of Mathematics and Mathematical Sciences
title On a Class of Integrals Involving a Bessel Function Times Gegenbauer Polynomials
title_full On a Class of Integrals Involving a Bessel Function Times Gegenbauer Polynomials
title_fullStr On a Class of Integrals Involving a Bessel Function Times Gegenbauer Polynomials
title_full_unstemmed On a Class of Integrals Involving a Bessel Function Times Gegenbauer Polynomials
title_short On a Class of Integrals Involving a Bessel Function Times Gegenbauer Polynomials
title_sort on a class of integrals involving a bessel function times gegenbauer polynomials
url http://dx.doi.org/10.1155/2007/73750
work_keys_str_mv AT stamatiskoumandos onaclassofintegralsinvolvingabesselfunctiontimesgegenbauerpolynomials