Development of Structurally Graded Alumina–Polymer Composites as Potential Orthodontic Bracket Materials

To create an orthodontic bracket material combining the favourable properties of ceramic and polymer while minimising their limitations, graded porous ceramic scaffolds were created using unidirectional gelation-freeze casting, following which the pores were infiltrated with polymer. Two processing...

Full description

Saved in:
Bibliographic Details
Main Authors: Yin Mun Wong, Anthony J. Ireland, Bo Su
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Biomimetics
Subjects:
Online Access:https://www.mdpi.com/2313-7673/10/4/227
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To create an orthodontic bracket material combining the favourable properties of ceramic and polymer while minimising their limitations, graded porous ceramic scaffolds were created using unidirectional gelation-freeze casting, following which the pores were infiltrated with polymer. Two processing parameters were investigated: (1) sedimentation times of 0, 8, and 24 h, with ceramic solid loading of 20 vol.% and 2.5 wt.% gelatine concentration, and (2) ceramic solid loadings of 15, 20, and 25 vol.% with a fixed 2.5 wt.% gelatine concentration and an 8 h sedimentation time. The graded ceramic structures demonstrated porosity gradients ranging from 9.86 to 63.84 vol.%, except those with 25 vol.% ceramic solid loading at 8 h sedimentation. The Al<sub>2</sub>O<sub>3</sub>-UDMA/TEGDMA composites had compressive strengths of 60.25 to 120.92 MPa, modulus of elasticity of 19.84 to 35.29 GPa, and fracture toughness of 0.78 to 1.78 MPa·m<sup>1/2</sup>. The values observed were between those of dense ceramic and pure polymer. Statistical analysis was conducted using Excel<sup>®</sup> 2019 (Microsoft<sup>®</sup>, Washington, DC, USA). Means, standard deviations, and 95% confidence intervals (CI) were calculated at a significance level of α = 0.05, alongside polynomial regression to evaluate relationships between variables. Composites with 20 vol.% ceramic solid loading at 8 h sedimentation displayed promising potential for further clinical validation.
ISSN:2313-7673