Lucas partitions
The Lucas sequence is defined by: L0=2,L1=1,Ln=Ln−1+Ln−2 for n≥2. Let V(n), r(n) denote respectively the number of partitions of n into parts, distinct parts from {Ln}. We develop formulas that facilitate the computation of V(n) and r(n).
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
1998-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/S0161171298000532 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832548484771741696 |
---|---|
author | Neville Robbins |
author_facet | Neville Robbins |
author_sort | Neville Robbins |
collection | DOAJ |
description | The Lucas sequence is defined by:
L0=2,L1=1,Ln=Ln−1+Ln−2 for n≥2. Let
V(n), r(n) denote respectively the number of partitions of n into parts, distinct parts from {Ln}. We
develop formulas that facilitate the computation of V(n) and r(n). |
format | Article |
id | doaj-art-a77a79adcb894fcebf2bc38be709cfc4 |
institution | Kabale University |
issn | 0161-1712 1687-0425 |
language | English |
publishDate | 1998-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Mathematics and Mathematical Sciences |
spelling | doaj-art-a77a79adcb894fcebf2bc38be709cfc42025-02-03T06:13:55ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251998-01-0121238739610.1155/S0161171298000532Lucas partitionsNeville Robbins0Mathematics Department, San Francisco State University, San Francisco 94132, CA, USAThe Lucas sequence is defined by: L0=2,L1=1,Ln=Ln−1+Ln−2 for n≥2. Let V(n), r(n) denote respectively the number of partitions of n into parts, distinct parts from {Ln}. We develop formulas that facilitate the computation of V(n) and r(n).http://dx.doi.org/10.1155/S0161171298000532 |
spellingShingle | Neville Robbins Lucas partitions International Journal of Mathematics and Mathematical Sciences |
title | Lucas partitions |
title_full | Lucas partitions |
title_fullStr | Lucas partitions |
title_full_unstemmed | Lucas partitions |
title_short | Lucas partitions |
title_sort | lucas partitions |
url | http://dx.doi.org/10.1155/S0161171298000532 |
work_keys_str_mv | AT nevillerobbins lucaspartitions |