Lucas partitions

The Lucas sequence is defined by: L0=2,L1=1,Ln=Ln−1+Ln−2 for n≥2. Let V(n), r(n) denote respectively the number of partitions of n into parts, distinct parts from {Ln}. We develop formulas that facilitate the computation of V(n) and r(n).

Saved in:
Bibliographic Details
Main Author: Neville Robbins
Format: Article
Language:English
Published: Wiley 1998-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171298000532
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832548484771741696
author Neville Robbins
author_facet Neville Robbins
author_sort Neville Robbins
collection DOAJ
description The Lucas sequence is defined by: L0=2,L1=1,Ln=Ln−1+Ln−2 for n≥2. Let V(n), r(n) denote respectively the number of partitions of n into parts, distinct parts from {Ln}. We develop formulas that facilitate the computation of V(n) and r(n).
format Article
id doaj-art-a77a79adcb894fcebf2bc38be709cfc4
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1998-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-a77a79adcb894fcebf2bc38be709cfc42025-02-03T06:13:55ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251998-01-0121238739610.1155/S0161171298000532Lucas partitionsNeville Robbins0Mathematics Department, San Francisco State University, San Francisco 94132, CA, USAThe Lucas sequence is defined by: L0=2,L1=1,Ln=Ln−1+Ln−2 for n≥2. Let V(n), r(n) denote respectively the number of partitions of n into parts, distinct parts from {Ln}. We develop formulas that facilitate the computation of V(n) and r(n).http://dx.doi.org/10.1155/S0161171298000532
spellingShingle Neville Robbins
Lucas partitions
International Journal of Mathematics and Mathematical Sciences
title Lucas partitions
title_full Lucas partitions
title_fullStr Lucas partitions
title_full_unstemmed Lucas partitions
title_short Lucas partitions
title_sort lucas partitions
url http://dx.doi.org/10.1155/S0161171298000532
work_keys_str_mv AT nevillerobbins lucaspartitions