Partitioning Functional of a Class of Convex Bodies

For each <i>n</i>-dimensional real Banach space <i>X</i>, each positive integer <i>m</i>, and each bounded set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>...

Full description

Saved in:
Bibliographic Details
Main Author: Xinling Zhang
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/1/48
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589137377492992
author Xinling Zhang
author_facet Xinling Zhang
author_sort Xinling Zhang
collection DOAJ
description For each <i>n</i>-dimensional real Banach space <i>X</i>, each positive integer <i>m</i>, and each bounded set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>⊆</mo><mi>X</mi></mrow></semantics></math></inline-formula> with diameter greater than 0, let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>β</mi><mi>X</mi></msub><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> be the infimum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math></inline-formula> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>⊆</mo><mi>X</mi></mrow></semantics></math></inline-formula> can be represented as the union of <i>m</i> subsets of <i>A</i>, whose diameters are not greater than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula> times the diameter of <i>A</i>. Estimating <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>β</mi><mi>X</mi></msub><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is an important part of Chuanming Zong’s quantitative program for attacking Borsuk’s problem. However, estimating the partitioning functionals of general convex bodies in finite dimensional Banach spaces is challenging, so we will begin with the estimation of partitioning functionals for special convex bodies. In this paper, we prove a series of inequalities about partitioning functionals of convex cones. Several estimations of partitioning functionals of the convex hull of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>A</mi><mo>+</mo><mi>u</mi><mo>)</mo><mo>∪</mo><mo>(</mo><mi>A</mi><mo>−</mo><mi>u</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>A</mi><mo>+</mo><mi>u</mi><mo>)</mo><mo>∪</mo><mo>(</mo><mo>−</mo><mi>A</mi><mo>−</mo><mi>u</mi><mo>)</mo></mrow></semantics></math></inline-formula> are also presented, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>⊆</mo><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>×</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></mrow></semantics></math></inline-formula> is a convex body with the origin <i>o</i> in its interior, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mrow><mo>∖</mo></mrow><mrow><mo>(</mo><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>×</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. These results contribute to the study of Borsuk’s problem through Zong’s program.
format Article
id doaj-art-a75c00540b374b959b0397b7a72f9548
institution Kabale University
issn 2075-1680
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-a75c00540b374b959b0397b7a72f95482025-01-24T13:22:15ZengMDPI AGAxioms2075-16802025-01-011414810.3390/axioms14010048Partitioning Functional of a Class of Convex BodiesXinling Zhang0School of Mathematics, Harbin Institute of Technology, Harbin 150001, ChinaFor each <i>n</i>-dimensional real Banach space <i>X</i>, each positive integer <i>m</i>, and each bounded set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>⊆</mo><mi>X</mi></mrow></semantics></math></inline-formula> with diameter greater than 0, let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>β</mi><mi>X</mi></msub><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> be the infimum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math></inline-formula> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>⊆</mo><mi>X</mi></mrow></semantics></math></inline-formula> can be represented as the union of <i>m</i> subsets of <i>A</i>, whose diameters are not greater than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula> times the diameter of <i>A</i>. Estimating <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>β</mi><mi>X</mi></msub><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is an important part of Chuanming Zong’s quantitative program for attacking Borsuk’s problem. However, estimating the partitioning functionals of general convex bodies in finite dimensional Banach spaces is challenging, so we will begin with the estimation of partitioning functionals for special convex bodies. In this paper, we prove a series of inequalities about partitioning functionals of convex cones. Several estimations of partitioning functionals of the convex hull of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>A</mi><mo>+</mo><mi>u</mi><mo>)</mo><mo>∪</mo><mo>(</mo><mi>A</mi><mo>−</mo><mi>u</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>A</mi><mo>+</mo><mi>u</mi><mo>)</mo><mo>∪</mo><mo>(</mo><mo>−</mo><mi>A</mi><mo>−</mo><mi>u</mi><mo>)</mo></mrow></semantics></math></inline-formula> are also presented, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>⊆</mo><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>×</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></mrow></semantics></math></inline-formula> is a convex body with the origin <i>o</i> in its interior, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mrow><mo>∖</mo></mrow><mrow><mo>(</mo><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>×</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. These results contribute to the study of Borsuk’s problem through Zong’s program.https://www.mdpi.com/2075-1680/14/1/48Borsuk’s problemconvex bodiespartitioning functional
spellingShingle Xinling Zhang
Partitioning Functional of a Class of Convex Bodies
Axioms
Borsuk’s problem
convex bodies
partitioning functional
title Partitioning Functional of a Class of Convex Bodies
title_full Partitioning Functional of a Class of Convex Bodies
title_fullStr Partitioning Functional of a Class of Convex Bodies
title_full_unstemmed Partitioning Functional of a Class of Convex Bodies
title_short Partitioning Functional of a Class of Convex Bodies
title_sort partitioning functional of a class of convex bodies
topic Borsuk’s problem
convex bodies
partitioning functional
url https://www.mdpi.com/2075-1680/14/1/48
work_keys_str_mv AT xinlingzhang partitioningfunctionalofaclassofconvexbodies