Non-Single-Valley Solutions for p-Order Feigenbaum’s Type Functional Equation f(φ(x))=φp(f(x))

This work deals with Feigenbaum’s functional equation f(φ(x))=φp(f(x)), φ(0)=1, 0≤φ(x)≤1, x∈ [0, 1], where p≥2 is an integer, φp is the p-fold iteration of φ, and f(x) is a strictly increasing continuous function on [0, 1] that satisfies f(0)=0, f(x)<x, (x∈(0, 1]). Using a constructive method, we...

Full description

Saved in:
Bibliographic Details
Main Author: Min Zhang
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/731863
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832552379789082624
author Min Zhang
author_facet Min Zhang
author_sort Min Zhang
collection DOAJ
description This work deals with Feigenbaum’s functional equation f(φ(x))=φp(f(x)), φ(0)=1, 0≤φ(x)≤1, x∈ [0, 1], where p≥2 is an integer, φp is the p-fold iteration of φ, and f(x) is a strictly increasing continuous function on [0, 1] that satisfies f(0)=0, f(x)<x, (x∈(0, 1]). Using a constructive method, we discuss the existence of non-single-valley continuous solutions of the above equation.
format Article
id doaj-art-a6e70cd32eeb44e0b0083e88ea8d8217
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-a6e70cd32eeb44e0b0083e88ea8d82172025-02-03T05:58:49ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/731863731863Non-Single-Valley Solutions for p-Order Feigenbaum’s Type Functional Equation f(φ(x))=φp(f(x))Min Zhang0College of Science, China University of Petroleum, Qingdao, Shandong 266555, ChinaThis work deals with Feigenbaum’s functional equation f(φ(x))=φp(f(x)), φ(0)=1, 0≤φ(x)≤1, x∈ [0, 1], where p≥2 is an integer, φp is the p-fold iteration of φ, and f(x) is a strictly increasing continuous function on [0, 1] that satisfies f(0)=0, f(x)<x, (x∈(0, 1]). Using a constructive method, we discuss the existence of non-single-valley continuous solutions of the above equation.http://dx.doi.org/10.1155/2014/731863
spellingShingle Min Zhang
Non-Single-Valley Solutions for p-Order Feigenbaum’s Type Functional Equation f(φ(x))=φp(f(x))
Abstract and Applied Analysis
title Non-Single-Valley Solutions for p-Order Feigenbaum’s Type Functional Equation f(φ(x))=φp(f(x))
title_full Non-Single-Valley Solutions for p-Order Feigenbaum’s Type Functional Equation f(φ(x))=φp(f(x))
title_fullStr Non-Single-Valley Solutions for p-Order Feigenbaum’s Type Functional Equation f(φ(x))=φp(f(x))
title_full_unstemmed Non-Single-Valley Solutions for p-Order Feigenbaum’s Type Functional Equation f(φ(x))=φp(f(x))
title_short Non-Single-Valley Solutions for p-Order Feigenbaum’s Type Functional Equation f(φ(x))=φp(f(x))
title_sort non single valley solutions for p order feigenbaum s type functional equation f φ x φp f x
url http://dx.doi.org/10.1155/2014/731863
work_keys_str_mv AT minzhang nonsinglevalleysolutionsforporderfeigenbaumstypefunctionalequationfphxphpfx