Relations algébriques entre valeurs de $E$-fonctions ou de $M$-fonctions

We show that all algebraic relations over $\overline{\mathbb{Q}}$ between the values of Siegel $E$-functions at non-zero algebraic points have a functional origin, in the sense that they can be obtained by degeneracy of algebro-differential relations over $\overline{\mathbb{Q}}(z)$ between the funct...

Full description

Saved in:
Bibliographic Details
Main Authors: Adamczewski, Boris, Faverjon, Colin
Format: Article
Language:English
Published: Académie des sciences 2024-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.634/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206175014060032
author Adamczewski, Boris
Faverjon, Colin
author_facet Adamczewski, Boris
Faverjon, Colin
author_sort Adamczewski, Boris
collection DOAJ
description We show that all algebraic relations over $\overline{\mathbb{Q}}$ between the values of Siegel $E$-functions at non-zero algebraic points have a functional origin, in the sense that they can be obtained by degeneracy of algebro-differential relations over $\overline{\mathbb{Q}}(z)$ between the functions under consideration. We obtain a similar result for the Mahler $M_q$-functions, in which the algebro-differential relations are replaced by the $\sigma _q$-algebraic relations. We also give several consequences of this result, in particular with respect to certain descent phenomena. The point of view adopted reveals striking similarities between the theory of $E$-functions and that of $M_q$-functions.
format Article
id doaj-art-a6d96b9be9cb4ab484c5f2f56d67e35f
institution Kabale University
issn 1778-3569
language English
publishDate 2024-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-a6d96b9be9cb4ab484c5f2f56d67e35f2025-02-07T11:23:31ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G101215124110.5802/crmath.63410.5802/crmath.634Relations algébriques entre valeurs de $E$-fonctions ou de $M$-fonctionsAdamczewski, Boris0Faverjon, Colin1Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, F-69622 Villeurbanne Cedex, FranceUniv Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, F-69622 Villeurbanne Cedex, FranceWe show that all algebraic relations over $\overline{\mathbb{Q}}$ between the values of Siegel $E$-functions at non-zero algebraic points have a functional origin, in the sense that they can be obtained by degeneracy of algebro-differential relations over $\overline{\mathbb{Q}}(z)$ between the functions under consideration. We obtain a similar result for the Mahler $M_q$-functions, in which the algebro-differential relations are replaced by the $\sigma _q$-algebraic relations. We also give several consequences of this result, in particular with respect to certain descent phenomena. The point of view adopted reveals striking similarities between the theory of $E$-functions and that of $M_q$-functions.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.634/Transcendanceindépendance algébrique$E$-fonctions de Siegel$M$-fonctions de Mahler
spellingShingle Adamczewski, Boris
Faverjon, Colin
Relations algébriques entre valeurs de $E$-fonctions ou de $M$-fonctions
Comptes Rendus. Mathématique
Transcendance
indépendance algébrique
$E$-fonctions de Siegel
$M$-fonctions de Mahler
title Relations algébriques entre valeurs de $E$-fonctions ou de $M$-fonctions
title_full Relations algébriques entre valeurs de $E$-fonctions ou de $M$-fonctions
title_fullStr Relations algébriques entre valeurs de $E$-fonctions ou de $M$-fonctions
title_full_unstemmed Relations algébriques entre valeurs de $E$-fonctions ou de $M$-fonctions
title_short Relations algébriques entre valeurs de $E$-fonctions ou de $M$-fonctions
title_sort relations algebriques entre valeurs de e fonctions ou de m fonctions
topic Transcendance
indépendance algébrique
$E$-fonctions de Siegel
$M$-fonctions de Mahler
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.634/
work_keys_str_mv AT adamczewskiboris relationsalgebriquesentrevaleursdeefonctionsoudemfonctions
AT faverjoncolin relationsalgebriquesentrevaleursdeefonctionsoudemfonctions