Thermal Profile of Accretion Disk Around Black Hole in 4D Einstein–Gauss–Bonnet Gravity

In this study, we investigate the properties of a thin accretion disk around a static spherically symmetric black hole in 4D Einstein–Gauss–Bonnet gravity, with an additional coupling constant, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline&q...

Full description

Saved in:
Bibliographic Details
Main Authors: Odilbek Kholmuminov, Bakhtiyor Narzilloev, Bobomurat Ahmedov
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/11/2/38
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850238707998654464
author Odilbek Kholmuminov
Bakhtiyor Narzilloev
Bobomurat Ahmedov
author_facet Odilbek Kholmuminov
Bakhtiyor Narzilloev
Bobomurat Ahmedov
author_sort Odilbek Kholmuminov
collection DOAJ
description In this study, we investigate the properties of a thin accretion disk around a static spherically symmetric black hole in 4D Einstein–Gauss–Bonnet gravity, with an additional coupling constant, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>, appearing in the spacetime metric. Using the Novikov–Thorne accretion disk model, we examine the thermal properties of the disk, finding that increasing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> reduces the energy, angular momentum, and effective potential of a test particle orbiting the black hole. We demonstrate that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> can mimic the spin of a Kerr black hole in general relativity up to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>≃</mo></mrow></semantics></math></inline-formula> 0.23 M for the maximum value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>. Our analysis of the thermal radiation flux shows that larger <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> values increase the flux and shift its maximum towards the central black hole, while far from the black hole, the solution recovers the Schwarzschild limit. The impact of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> on the radiative efficiency of the disk is weak but can slightly alter it. Assuming black-body radiation, we observe that the disk’s temperature peaks near its inner edge and is higher for larger <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> values. Lastly, the electromagnetic spectra reveal that the disk’s luminosity is lower in Einstein–Gauss–Bonnet gravity compared to general relativity, with the peak luminosity shifting toward higher frequencies, corresponding to the soft X-ray band as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> increases.
format Article
id doaj-art-a6d475e940cf47ada9f332126d7e295d
institution OA Journals
issn 2218-1997
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Universe
spelling doaj-art-a6d475e940cf47ada9f332126d7e295d2025-08-20T02:01:24ZengMDPI AGUniverse2218-19972025-01-011123810.3390/universe11020038Thermal Profile of Accretion Disk Around Black Hole in 4D Einstein–Gauss–Bonnet GravityOdilbek Kholmuminov0Bakhtiyor Narzilloev1Bobomurat Ahmedov2Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, UzbekistanDepartment of Physics, New Uzbekistan University, Movarounnahr Str. 1, Tashkent 100000, UzbekistanInstitute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, UzbekistanIn this study, we investigate the properties of a thin accretion disk around a static spherically symmetric black hole in 4D Einstein–Gauss–Bonnet gravity, with an additional coupling constant, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>, appearing in the spacetime metric. Using the Novikov–Thorne accretion disk model, we examine the thermal properties of the disk, finding that increasing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> reduces the energy, angular momentum, and effective potential of a test particle orbiting the black hole. We demonstrate that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> can mimic the spin of a Kerr black hole in general relativity up to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>≃</mo></mrow></semantics></math></inline-formula> 0.23 M for the maximum value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>. Our analysis of the thermal radiation flux shows that larger <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> values increase the flux and shift its maximum towards the central black hole, while far from the black hole, the solution recovers the Schwarzschild limit. The impact of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> on the radiative efficiency of the disk is weak but can slightly alter it. Assuming black-body radiation, we observe that the disk’s temperature peaks near its inner edge and is higher for larger <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> values. Lastly, the electromagnetic spectra reveal that the disk’s luminosity is lower in Einstein–Gauss–Bonnet gravity compared to general relativity, with the peak luminosity shifting toward higher frequencies, corresponding to the soft X-ray band as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> increases.https://www.mdpi.com/2218-1997/11/2/38black holeaccretion diskgeneral relativityEinstein–Gauss–Bonnet gravity
spellingShingle Odilbek Kholmuminov
Bakhtiyor Narzilloev
Bobomurat Ahmedov
Thermal Profile of Accretion Disk Around Black Hole in 4D Einstein–Gauss–Bonnet Gravity
Universe
black hole
accretion disk
general relativity
Einstein–Gauss–Bonnet gravity
title Thermal Profile of Accretion Disk Around Black Hole in 4D Einstein–Gauss–Bonnet Gravity
title_full Thermal Profile of Accretion Disk Around Black Hole in 4D Einstein–Gauss–Bonnet Gravity
title_fullStr Thermal Profile of Accretion Disk Around Black Hole in 4D Einstein–Gauss–Bonnet Gravity
title_full_unstemmed Thermal Profile of Accretion Disk Around Black Hole in 4D Einstein–Gauss–Bonnet Gravity
title_short Thermal Profile of Accretion Disk Around Black Hole in 4D Einstein–Gauss–Bonnet Gravity
title_sort thermal profile of accretion disk around black hole in 4d einstein gauss bonnet gravity
topic black hole
accretion disk
general relativity
Einstein–Gauss–Bonnet gravity
url https://www.mdpi.com/2218-1997/11/2/38
work_keys_str_mv AT odilbekkholmuminov thermalprofileofaccretiondiskaroundblackholein4deinsteingaussbonnetgravity
AT bakhtiyornarzilloev thermalprofileofaccretiondiskaroundblackholein4deinsteingaussbonnetgravity
AT bobomuratahmedov thermalprofileofaccretiondiskaroundblackholein4deinsteingaussbonnetgravity