An Improved Global and Local Fusion Path-Planning Algorithm for Mobile Robots

Path planning is a core technology for mobile robots. However, existing state-of-the-art methods suffer from issues such as excessive path redundancy, too many turning points, and poor environmental adaptability. To address these challenges, this paper proposes a novel global and local fusion path-p...

Full description

Saved in:
Bibliographic Details
Main Authors: Yongliang Shi, Shucheng Huang, Mingxing Li
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/24/24/7950
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Path planning is a core technology for mobile robots. However, existing state-of-the-art methods suffer from issues such as excessive path redundancy, too many turning points, and poor environmental adaptability. To address these challenges, this paper proposes a novel global and local fusion path-planning algorithm. For global path planning, we reduce path redundancy and excessive turning points by designing a new heuristic function and constructing an improved path generation method. For local path planning, we propose an environment-aware dynamic parameter adjustment strategy, incorporating deviation and avoidance dynamic obstacle evaluation factors, thus addressing issues of local optima and timely avoidance of dynamic obstacles. Finally, we fuse those global and local path-planning improvements to form our fusion path-planning algorithm, which can enhance the robot’s adaptability to complex scenarios while reducing path redundancy and turning points. Simulation experiments demonstrate that the improved fusion path-planning algorithm not only effectively addresses existing issues but also operates with higher efficiency.
ISSN:1424-8220