Effects of Electric Pulse Current on the Aging Kinetics of 2219 Aluminum Alloy

The conventional aging experiments and the low density electric pulse current (LDEPC for short) added aging experiments, with the self-made positive and negative alternating pulse power equipment, were conducted to study the influence of LDEPC on the dynamics of phase transformation in 2219 aluminum...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiao Zhang, Lihua Zhan, Shufeng Jia
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2014/240879
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The conventional aging experiments and the low density electric pulse current (LDEPC for short) added aging experiments, with the self-made positive and negative alternating pulse power equipment, were conducted to study the influence of LDEPC on the dynamics of phase transformation in 2219 aluminum alloy by means of measuring the variation of hardness with aging time. The results showed that the hardness in both aging systems increased with the increasing of aging time until it reached the peak value; then it gradually reduced. The hardness of LDEPC added aging is generally greater than the conventional one before the peak aging time. The Avrami dynamics equation of conventional isothermal aging was obtained based on the hardness evolution law. The effects of electromigration and ponderomotive force were introduced into the Avrami empirical equation; in turn, the dynamics equation of LDEPC added aging was established. At last, the isothermal transformation curves of both the regular aging and the LDEPC added aging were derived which revealed that the nucleation rate, as well as the growth rate, was promoted by electric pulse current. The research work provided the theoretical support for the regulation of the coupling energy field on the dynamics of phase transformation in 2219 aluminum alloy.
ISSN:1687-8434
1687-8442