A distributional reinforcement learning model for optimal glucose control after cardiac surgery

Abstract This study introduces Glucose Level Understanding and Control Optimized for Safety and Efficacy (GLUCOSE), a distributional offline reinforcement learning algorithm for optimizing insulin dosing after cardiac surgery. Trained on 5228 patients, tested on 920, and externally validated on 649,...

Full description

Saved in:
Bibliographic Details
Main Authors: Jacob M. Desman, Zhang-Wei Hong, Moein Sabounchi, Ashwin S. Sawant, Jaskirat Gill, Ana C. Costa, Gagan Kumar, Rajeev Sharma, Arpeta Gupta, Paul McCarthy, Veena Nandwani, Doug Powell, Alexandra Carideo, Donnie Goodwin, Sanam Ahmed, Umesh Gidwani, Matthew A. Levin, Robin Varghese, Farzan Filsoufi, Robert Freeman, Avniel Shetreat-Klein, Alexander W. Charney, Ira Hofer, Lili Chan, David Reich, Patricia Kovatch, Roopa Kohli-Seth, Monica Kraft, Pulkit Agrawal, John A. Kellum, Girish N. Nadkarni, Ankit Sakhuja
Format: Article
Language:English
Published: Nature Portfolio 2025-05-01
Series:npj Digital Medicine
Online Access:https://doi.org/10.1038/s41746-025-01709-9
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849687966526472192
author Jacob M. Desman
Zhang-Wei Hong
Moein Sabounchi
Ashwin S. Sawant
Jaskirat Gill
Ana C. Costa
Gagan Kumar
Rajeev Sharma
Arpeta Gupta
Paul McCarthy
Veena Nandwani
Doug Powell
Alexandra Carideo
Donnie Goodwin
Sanam Ahmed
Umesh Gidwani
Matthew A. Levin
Robin Varghese
Farzan Filsoufi
Robert Freeman
Avniel Shetreat-Klein
Alexander W. Charney
Ira Hofer
Lili Chan
David Reich
Patricia Kovatch
Roopa Kohli-Seth
Monica Kraft
Pulkit Agrawal
John A. Kellum
Girish N. Nadkarni
Ankit Sakhuja
author_facet Jacob M. Desman
Zhang-Wei Hong
Moein Sabounchi
Ashwin S. Sawant
Jaskirat Gill
Ana C. Costa
Gagan Kumar
Rajeev Sharma
Arpeta Gupta
Paul McCarthy
Veena Nandwani
Doug Powell
Alexandra Carideo
Donnie Goodwin
Sanam Ahmed
Umesh Gidwani
Matthew A. Levin
Robin Varghese
Farzan Filsoufi
Robert Freeman
Avniel Shetreat-Klein
Alexander W. Charney
Ira Hofer
Lili Chan
David Reich
Patricia Kovatch
Roopa Kohli-Seth
Monica Kraft
Pulkit Agrawal
John A. Kellum
Girish N. Nadkarni
Ankit Sakhuja
author_sort Jacob M. Desman
collection DOAJ
description Abstract This study introduces Glucose Level Understanding and Control Optimized for Safety and Efficacy (GLUCOSE), a distributional offline reinforcement learning algorithm for optimizing insulin dosing after cardiac surgery. Trained on 5228 patients, tested on 920, and externally validated on 649, GLUCOSE achieved a mean estimated reward of 0.0 [–0.07, 0.06] in internal testing and –0.63 [–0.74, –0.52] in external validation, outperforming clinician returns of –1.29 [–1.37, –1.20] and –1.02 [–1.16, –0.89]. In multi-phase human validation, GLUCOSE first showed a significantly lower mean absolute error (MAE) in insulin dosing, with 0.9 units MAE versus clinicians’ 1.97 units (p < 0.001) in internal testing and 1.90 versus 2.24 units (p = 0.003) in external validation. The second and third phases found GLUCOSE’s performance as comparable to or exceeding that of senior clinicians in MAE, safety, effectiveness, and acceptability. These findings suggest GLUCOSE as a robust tool for improving postoperative glucose management.
format Article
id doaj-art-a6be6a803b9240ce965adb2f2bd81eae
institution DOAJ
issn 2398-6352
language English
publishDate 2025-05-01
publisher Nature Portfolio
record_format Article
series npj Digital Medicine
spelling doaj-art-a6be6a803b9240ce965adb2f2bd81eae2025-08-20T03:22:11ZengNature Portfolionpj Digital Medicine2398-63522025-05-018111210.1038/s41746-025-01709-9A distributional reinforcement learning model for optimal glucose control after cardiac surgeryJacob M. Desman0Zhang-Wei Hong1Moein Sabounchi2Ashwin S. Sawant3Jaskirat Gill4Ana C. Costa5Gagan Kumar6Rajeev Sharma7Arpeta Gupta8Paul McCarthy9Veena Nandwani10Doug Powell11Alexandra Carideo12Donnie Goodwin13Sanam Ahmed14Umesh Gidwani15Matthew A. Levin16Robin Varghese17Farzan Filsoufi18Robert Freeman19Avniel Shetreat-Klein20Alexander W. Charney21Ira Hofer22Lili Chan23David Reich24Patricia Kovatch25Roopa Kohli-Seth26Monica Kraft27Pulkit Agrawal28John A. Kellum29Girish N. Nadkarni30Ankit Sakhuja31The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount SinaiImprobable AI Lab, Massachusetts Institute of TechnologyThe Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount SinaiThe Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount SinaiInstitute for Critical Care Medicine, Icahn School of Medicine at Mount SinaiDepartment of Cardiothoracic Surgery, Icahn School of Medicine at Mount SinaiDepartment of Pulmonary and Critical Care Medicine, Northeast Georgia Medical CenterDivision of Endocrinology, Hackensack University Medical CenterDivision of Endocrinology, Millenium Physician GroupSection of Cardiovascular Critical Care, Department of Cardiovascular and Thoracic Surgery, West Virginia UniversitySection of Cardiovascular Critical Care, Department of Cardiovascular and Thoracic Surgery, West Virginia UniversitySection of Cardiovascular Critical Care, Department of Cardiovascular and Thoracic Surgery, West Virginia UniversityInstitute for Critical Care Medicine, Icahn School of Medicine at Mount SinaiSection of Cardiovascular Critical Care, Department of Cardiovascular and Thoracic Surgery, West Virginia UniversityInstitute for Critical Care Medicine, Icahn School of Medicine at Mount SinaiInstitute for Critical Care Medicine, Icahn School of Medicine at Mount SinaiDepartment of Anesthesiology, Perioperative, and Pain Medicine, Icahn School of Medicine at Mount SinaiInstitute for Critical Care Medicine, Icahn School of Medicine at Mount SinaiDepartment of Cardiothoracic Surgery, Icahn School of Medicine at Mount SinaiThe Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount SinaiDepartment of Rehabilitation and Physical Medicine, Icahn School of Medicine at Mount SinaiThe Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount SinaiThe Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount SinaiThe Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount SinaiDepartment of Anesthesiology, Perioperative, and Pain Medicine, Icahn School of Medicine at Mount SinaiScientific Computing, Icahn School of Medicine at Mount SinaiInstitute for Critical Care Medicine, Icahn School of Medicine at Mount SinaiSamuel Bronfman Department of Medicine, Icahn School of Medicine at Mount SinaiImprobable AI Lab, Massachusetts Institute of TechnologyDepartment of Critical Care Medicine, University of Pittsburgh School of MedicineThe Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount SinaiThe Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount SinaiAbstract This study introduces Glucose Level Understanding and Control Optimized for Safety and Efficacy (GLUCOSE), a distributional offline reinforcement learning algorithm for optimizing insulin dosing after cardiac surgery. Trained on 5228 patients, tested on 920, and externally validated on 649, GLUCOSE achieved a mean estimated reward of 0.0 [–0.07, 0.06] in internal testing and –0.63 [–0.74, –0.52] in external validation, outperforming clinician returns of –1.29 [–1.37, –1.20] and –1.02 [–1.16, –0.89]. In multi-phase human validation, GLUCOSE first showed a significantly lower mean absolute error (MAE) in insulin dosing, with 0.9 units MAE versus clinicians’ 1.97 units (p < 0.001) in internal testing and 1.90 versus 2.24 units (p = 0.003) in external validation. The second and third phases found GLUCOSE’s performance as comparable to or exceeding that of senior clinicians in MAE, safety, effectiveness, and acceptability. These findings suggest GLUCOSE as a robust tool for improving postoperative glucose management.https://doi.org/10.1038/s41746-025-01709-9
spellingShingle Jacob M. Desman
Zhang-Wei Hong
Moein Sabounchi
Ashwin S. Sawant
Jaskirat Gill
Ana C. Costa
Gagan Kumar
Rajeev Sharma
Arpeta Gupta
Paul McCarthy
Veena Nandwani
Doug Powell
Alexandra Carideo
Donnie Goodwin
Sanam Ahmed
Umesh Gidwani
Matthew A. Levin
Robin Varghese
Farzan Filsoufi
Robert Freeman
Avniel Shetreat-Klein
Alexander W. Charney
Ira Hofer
Lili Chan
David Reich
Patricia Kovatch
Roopa Kohli-Seth
Monica Kraft
Pulkit Agrawal
John A. Kellum
Girish N. Nadkarni
Ankit Sakhuja
A distributional reinforcement learning model for optimal glucose control after cardiac surgery
npj Digital Medicine
title A distributional reinforcement learning model for optimal glucose control after cardiac surgery
title_full A distributional reinforcement learning model for optimal glucose control after cardiac surgery
title_fullStr A distributional reinforcement learning model for optimal glucose control after cardiac surgery
title_full_unstemmed A distributional reinforcement learning model for optimal glucose control after cardiac surgery
title_short A distributional reinforcement learning model for optimal glucose control after cardiac surgery
title_sort distributional reinforcement learning model for optimal glucose control after cardiac surgery
url https://doi.org/10.1038/s41746-025-01709-9
work_keys_str_mv AT jacobmdesman adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT zhangweihong adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT moeinsabounchi adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT ashwinssawant adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT jaskiratgill adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT anaccosta adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT gagankumar adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT rajeevsharma adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT arpetagupta adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT paulmccarthy adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT veenanandwani adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT dougpowell adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT alexandracarideo adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT donniegoodwin adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT sanamahmed adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT umeshgidwani adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT matthewalevin adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT robinvarghese adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT farzanfilsoufi adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT robertfreeman adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT avnielshetreatklein adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT alexanderwcharney adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT irahofer adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT lilichan adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT davidreich adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT patriciakovatch adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT roopakohliseth adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT monicakraft adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT pulkitagrawal adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT johnakellum adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT girishnnadkarni adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT ankitsakhuja adistributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT jacobmdesman distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT zhangweihong distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT moeinsabounchi distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT ashwinssawant distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT jaskiratgill distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT anaccosta distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT gagankumar distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT rajeevsharma distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT arpetagupta distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT paulmccarthy distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT veenanandwani distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT dougpowell distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT alexandracarideo distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT donniegoodwin distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT sanamahmed distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT umeshgidwani distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT matthewalevin distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT robinvarghese distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT farzanfilsoufi distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT robertfreeman distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT avnielshetreatklein distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT alexanderwcharney distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT irahofer distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT lilichan distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT davidreich distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT patriciakovatch distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT roopakohliseth distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT monicakraft distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT pulkitagrawal distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT johnakellum distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT girishnnadkarni distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery
AT ankitsakhuja distributionalreinforcementlearningmodelforoptimalglucosecontrolaftercardiacsurgery