ETAFHrNet: A Transformer-Based Multi-Scale Network for Asymmetric Pavement Crack Segmentation
Accurate segmentation of pavement cracks from high-resolution remote sensing imagery plays a crucial role in automated road condition assessment and infrastructure maintenance. However, crack structures often exhibit asymmetry, irregular morphology, and multi-scale variations, posing significant cha...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/11/6183 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Accurate segmentation of pavement cracks from high-resolution remote sensing imagery plays a crucial role in automated road condition assessment and infrastructure maintenance. However, crack structures often exhibit asymmetry, irregular morphology, and multi-scale variations, posing significant challenges to conventional CNN-based methods in real-world environments. Specifically, the proposed ETAFHrNet focuses on two predominant pavement-distress morphologies—linear cracks (transverse and longitudinal) and alligator cracks—and has been empirically validated on their intersections and branching patterns over both asphalt and concrete road surfaces. In this work, we present ETAFHrNet, a novel attention-guided segmentation network designed to address the limitations of traditional architectures in detecting fine-grained and asymmetric patterns. ETAFHrNet integrates Transformer-based global attention and multi-scale hybrid feature fusion, enhancing both contextual perception and detail sensitivity. The network introduces two key modules: the Efficient Hybrid Attention Transformer (EHAT), which captures long-range dependencies, and the Cross-Scale Hybrid Attention Module (CSHAM), which adaptively fuses features across spatial resolutions. To support model training and benchmarking, we also propose QD-Crack, a high-resolution, pixel-level annotated dataset collected from real-world road inspection scenarios. Experimental results show that ETAFHrNet significantly outperforms existing methods—including U-Net, DeepLabv3+, and HRNet—in both segmentation accuracy and generalization ability. These findings demonstrate the effectiveness of interpretable, multi-scale attention architectures in complex object detection and image classification tasks, making our approach relevant for broader applications, such as autonomous driving, remote sensing, and smart infrastructure systems. |
|---|---|
| ISSN: | 2076-3417 |