COLA-GLM: collaborative one-shot and lossless algorithms of generalized linear models for decentralized observational healthcare data
Abstract Clinical insights from real-world data often require aggregating information from institutions to ensure sufficient sample sizes and generalizability. However, patient privacy concerns only limit the sharing of patient-level data, and traditional federated learning algorithms, relying on ex...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | npj Digital Medicine |
| Online Access: | https://doi.org/10.1038/s41746-025-01781-1 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Clinical insights from real-world data often require aggregating information from institutions to ensure sufficient sample sizes and generalizability. However, patient privacy concerns only limit the sharing of patient-level data, and traditional federated learning algorithms, relying on extensive back-and-forth communications, can be inefficient to implement. We introduce the Collaborative One-shot Lossless Algorithm for Generalized Linear Models (COLA-GLM), a novel federated learning algorithm that supports diverse outcome types via generalized linear models and achieves results identical to a pooled patient-level data analysis (lossless) with only a single round of aggregated data exchange (one-shot). To further protect aggregated institutional data, we developed a secure extension, secure-COLA-GLM, utilizing homomorphic encryption. We demonstrated the effectiveness and lossless property of COLA-GLM through applications to an international influenza cohort and a decentralized U.S. COVID-19 mortality study. COLA-GLM and secure-COLA-GLM offer a scalable, efficient solution for decentralized collaborative learning involving multiple data partners and diverse security requirements. |
|---|---|
| ISSN: | 2398-6352 |