New Harmonic Number Series

Based on a recent representation of the psi function due to Guillera and Sondow and independently Boyadzhiev, new closed forms for various series involving harmonic numbers and inverse factorials are derived. A high point of the presentation is the rediscovery, by much simpler means, of a famous qua...

Full description

Saved in:
Bibliographic Details
Main Authors: Kunle Adegoke, Robert Frontczak
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:AppliedMath
Subjects:
Online Access:https://www.mdpi.com/2673-9909/5/1/21
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Based on a recent representation of the psi function due to Guillera and Sondow and independently Boyadzhiev, new closed forms for various series involving harmonic numbers and inverse factorials are derived. A high point of the presentation is the rediscovery, by much simpler means, of a famous quadratic Euler sum originally discovered in 1995 by Borwein and Borwein. In addition, the following series <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mo>∞</mo></msubsup><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mrow><mi>n</mi><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mfenced separators="" open="(" close=")"><mfrac linethickness="0pt"><mrow><mi>n</mi><mo>+</mo><mi>z</mi></mrow><mi>n</mi></mfrac></mfenced></mrow></mfrac></mstyle><mo>,</mo><mspace width="1.em"></mspace><msubsup><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mo>∞</mo></msubsup><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mrow><mi>n</mi><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mfenced separators="" open="(" close=")"><mfrac linethickness="0pt"><mrow><mi>n</mi><mo>+</mo><mi>z</mi></mrow><mi>n</mi></mfrac></mfenced></mrow></mfrac></mstyle><mo>,</mo><mspace width="1.em"></mspace><msubsup><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mo>∞</mo></msubsup><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mrow><mi>n</mi><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>3</mn><mo>)</mo></mrow><mfenced separators="" open="(" close=")"><mfrac linethickness="0pt"><mrow><mi>n</mi><mo>+</mo><mi>z</mi></mrow><mi>n</mi></mfrac></mfenced></mrow></mfrac></mstyle></mrow></semantics></math></inline-formula>, as well as the harmonic and odd harmonic number series associated with them are evaluated.
ISSN:2673-9909