From museum drawer to tree: Historical DNA phylogenomics clarifies the systematics of rare dung beetles (Coleoptera: Scarabaeinae) from museum collections.

Although several methods exist for extracting and sequencing historical DNA originating from dry-preserved insect specimens deposited in natural history museums, no consensus exists as to what is the optimal approach. We demonstrate that a customized, low-cost archival DNA extraction protocol (∼€10...

Full description

Saved in:
Bibliographic Details
Main Authors: Fernando Lopes, Nicole Gunter, Conrad P D T Gillett, Giulio Montanaro, Michele Rossini, Federica Losacco, Gimo M Daniel, Nicolas Straube, Sergei Tarasov
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2024-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0309596
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although several methods exist for extracting and sequencing historical DNA originating from dry-preserved insect specimens deposited in natural history museums, no consensus exists as to what is the optimal approach. We demonstrate that a customized, low-cost archival DNA extraction protocol (∼€10 per sample), in combination with Ultraconserved Elements (UCEs), is an effective tool for insect phylogenomic studies. We successfully tested our approach by sequencing DNA from scarab dung beetles preserved in both wet and dry collections, including unique primary type and rare historical specimens from internationally important natural history museums in London, Paris and Helsinki. The focal specimens comprised of enigmatic dung beetle genera (Nesosisyphus, Onychothecus and Helictopleurus) and varied in age and preservation. The oldest specimen, the holotype of the now possibly extinct Mauritian endemic Nesosisyphus rotundatus, was collected in 1944. We obtained high-quality DNA from all studied specimens to enable the generation of a UCE-based dataset that revealed an insightful and well-supported phylogenetic tree of dung beetles. The resulting phylogeny propounded the reclassification of Onychothecus (previously incertae sedis) within the tribe Coprini. Our approach demonstrates the feasibility and effectiveness of combining DNA data from historic and recent museum specimens to provide novel insights. The proposed archival DNA protocol is available at DOI 10.17504/protocols.io.81wgbybqyvpk/v3.
ISSN:1932-6203