Digitalizing metallic materials from image segmentation to multiscale solutions via physics informed operator learning

Abstract Fast prediction of microstructural responses based on realistic material topology is vital for linking process, structure, and properties. This work presents a digital framework for metallic materials using microscale features. We explore deep learning for two primary goals: (1) segmenting...

Full description

Saved in:
Bibliographic Details
Main Authors: Shahed Rezaei, Kianoosh Taghikhani, Alexandre Viardin, Reza Najian Asl, Ali Harandi, Nikhil Vijay Jagtap, David Bailly, Hannah Naber, Alexander Gramlich, Tim Brepols, Mustapha Abouridouane, Ulrich Krupp, Thomas Bergs, Markus Apel
Format: Article
Language:English
Published: Nature Portfolio 2025-08-01
Series:npj Computational Materials
Online Access:https://doi.org/10.1038/s41524-025-01718-y
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849343327288164352
author Shahed Rezaei
Kianoosh Taghikhani
Alexandre Viardin
Reza Najian Asl
Ali Harandi
Nikhil Vijay Jagtap
David Bailly
Hannah Naber
Alexander Gramlich
Tim Brepols
Mustapha Abouridouane
Ulrich Krupp
Thomas Bergs
Markus Apel
author_facet Shahed Rezaei
Kianoosh Taghikhani
Alexandre Viardin
Reza Najian Asl
Ali Harandi
Nikhil Vijay Jagtap
David Bailly
Hannah Naber
Alexander Gramlich
Tim Brepols
Mustapha Abouridouane
Ulrich Krupp
Thomas Bergs
Markus Apel
author_sort Shahed Rezaei
collection DOAJ
description Abstract Fast prediction of microstructural responses based on realistic material topology is vital for linking process, structure, and properties. This work presents a digital framework for metallic materials using microscale features. We explore deep learning for two primary goals: (1) segmenting experimental images to extract microstructural topology, translated into spatial property distributions; and (2) learning mappings from digital microstructures to mechanical fields using physics-informed operator learning. Loss functions are formulated using discretized weak or strong forms, and boundary conditions-Dirichlet and periodic-are embedded in the network. Input space is reduced to focus on key features of 2D and 3D materials, and generalization to varying loads and input topologies are demonstrated. Compared to FEM and FFT solvers, our models yield errors under 1–5% for averaged quantities and are over 1000× faster during 3D inference.
format Article
id doaj-art-a61d3333d54a4a8b9a2968dee35e4c0b
institution Kabale University
issn 2057-3960
language English
publishDate 2025-08-01
publisher Nature Portfolio
record_format Article
series npj Computational Materials
spelling doaj-art-a61d3333d54a4a8b9a2968dee35e4c0b2025-08-20T03:43:01ZengNature Portfolionpj Computational Materials2057-39602025-08-0111111810.1038/s41524-025-01718-yDigitalizing metallic materials from image segmentation to multiscale solutions via physics informed operator learningShahed Rezaei0Kianoosh Taghikhani1Alexandre Viardin2Reza Najian Asl3Ali Harandi4Nikhil Vijay Jagtap5David Bailly6Hannah Naber7Alexander Gramlich8Tim Brepols9Mustapha Abouridouane10Ulrich Krupp11Thomas Bergs12Markus Apel13ACCESS e.V.ACCESS e.V.ACCESS e.V.Technical University of MunichInstitute of Applied Mechanics, RWTH Aachen UniversityInstitute for Metal FormingInstitute for Metal FormingSteel InstituteSteel InstituteInstitute of Applied Mechanics, RWTH Aachen UniversityManufacturing Technology InstituteSteel InstituteManufacturing Technology InstituteACCESS e.V.Abstract Fast prediction of microstructural responses based on realistic material topology is vital for linking process, structure, and properties. This work presents a digital framework for metallic materials using microscale features. We explore deep learning for two primary goals: (1) segmenting experimental images to extract microstructural topology, translated into spatial property distributions; and (2) learning mappings from digital microstructures to mechanical fields using physics-informed operator learning. Loss functions are formulated using discretized weak or strong forms, and boundary conditions-Dirichlet and periodic-are embedded in the network. Input space is reduced to focus on key features of 2D and 3D materials, and generalization to varying loads and input topologies are demonstrated. Compared to FEM and FFT solvers, our models yield errors under 1–5% for averaged quantities and are over 1000× faster during 3D inference.https://doi.org/10.1038/s41524-025-01718-y
spellingShingle Shahed Rezaei
Kianoosh Taghikhani
Alexandre Viardin
Reza Najian Asl
Ali Harandi
Nikhil Vijay Jagtap
David Bailly
Hannah Naber
Alexander Gramlich
Tim Brepols
Mustapha Abouridouane
Ulrich Krupp
Thomas Bergs
Markus Apel
Digitalizing metallic materials from image segmentation to multiscale solutions via physics informed operator learning
npj Computational Materials
title Digitalizing metallic materials from image segmentation to multiscale solutions via physics informed operator learning
title_full Digitalizing metallic materials from image segmentation to multiscale solutions via physics informed operator learning
title_fullStr Digitalizing metallic materials from image segmentation to multiscale solutions via physics informed operator learning
title_full_unstemmed Digitalizing metallic materials from image segmentation to multiscale solutions via physics informed operator learning
title_short Digitalizing metallic materials from image segmentation to multiscale solutions via physics informed operator learning
title_sort digitalizing metallic materials from image segmentation to multiscale solutions via physics informed operator learning
url https://doi.org/10.1038/s41524-025-01718-y
work_keys_str_mv AT shahedrezaei digitalizingmetallicmaterialsfromimagesegmentationtomultiscalesolutionsviaphysicsinformedoperatorlearning
AT kianooshtaghikhani digitalizingmetallicmaterialsfromimagesegmentationtomultiscalesolutionsviaphysicsinformedoperatorlearning
AT alexandreviardin digitalizingmetallicmaterialsfromimagesegmentationtomultiscalesolutionsviaphysicsinformedoperatorlearning
AT rezanajianasl digitalizingmetallicmaterialsfromimagesegmentationtomultiscalesolutionsviaphysicsinformedoperatorlearning
AT aliharandi digitalizingmetallicmaterialsfromimagesegmentationtomultiscalesolutionsviaphysicsinformedoperatorlearning
AT nikhilvijayjagtap digitalizingmetallicmaterialsfromimagesegmentationtomultiscalesolutionsviaphysicsinformedoperatorlearning
AT davidbailly digitalizingmetallicmaterialsfromimagesegmentationtomultiscalesolutionsviaphysicsinformedoperatorlearning
AT hannahnaber digitalizingmetallicmaterialsfromimagesegmentationtomultiscalesolutionsviaphysicsinformedoperatorlearning
AT alexandergramlich digitalizingmetallicmaterialsfromimagesegmentationtomultiscalesolutionsviaphysicsinformedoperatorlearning
AT timbrepols digitalizingmetallicmaterialsfromimagesegmentationtomultiscalesolutionsviaphysicsinformedoperatorlearning
AT mustaphaabouridouane digitalizingmetallicmaterialsfromimagesegmentationtomultiscalesolutionsviaphysicsinformedoperatorlearning
AT ulrichkrupp digitalizingmetallicmaterialsfromimagesegmentationtomultiscalesolutionsviaphysicsinformedoperatorlearning
AT thomasbergs digitalizingmetallicmaterialsfromimagesegmentationtomultiscalesolutionsviaphysicsinformedoperatorlearning
AT markusapel digitalizingmetallicmaterialsfromimagesegmentationtomultiscalesolutionsviaphysicsinformedoperatorlearning