Blow-up of nonradial solutions to the hyperbolic-elliptic chemotaxis system with logistic source

This paper is concerned with the blow-up of solutions to the following hyperbolic-elliptic chemotaxis system: \begin{equation*} {\left\lbrace \begin{array}{ll} u_{t} =-\nabla \cdot (\chi u \nabla v)+g(u), \qquad x\in \Omega , \ t>0,\\ \;\;\; 0 =\Delta v-v+u, \hspace{58.33328pt}x\in \Omega , \ t&...

Full description

Saved in:
Bibliographic Details
Main Author: Baghaei, khadijeh
Format: Article
Language:English
Published: Académie des sciences 2023-01-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.397/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper is concerned with the blow-up of solutions to the following hyperbolic-elliptic chemotaxis system: \begin{equation*} {\left\lbrace \begin{array}{ll} u_{t} =-\nabla \cdot (\chi u \nabla v)+g(u), \qquad x\in \Omega , \ t>0,\\ \;\;\; 0 =\Delta v-v+u, \hspace{58.33328pt}x\in \Omega , \ t>0, \end{array}\right.} \end{equation*} under homogeneous Neumann boundary conditions in a bounded domain $ \Omega \subset \mathbb{R}^{n}, n\ge 1,$ with smooth boundary and the function $g$ is assumed to generalize the logistic source: \begin{equation*} g(s)\le a s - b s^{\gamma }\ \text{ for} \ s>0 \end{equation*} with $1<\gamma \le 2.$ For $b<\chi $ and some suitable conditions on parameters of problem, we prove that the solutions of this problem blow up in finite time. This result extend the obtained results for this problem.
ISSN:1778-3569