PMSM Rotor Position Detection Based on Hybrid Optical Encoder and R-Signal Zero-Setting Scheme

Rotor position detection is a prerequisite for achieving good control performance of PMSM. For a PMSM control system based on an optical encoder, it is a difficulty to detect rotor position and achieve R-Signal zero-setting. To solve the problem, a hybrid optical encoder is used in the paper by whic...

Full description

Saved in:
Bibliographic Details
Main Authors: Yaoqiang Wang, Xiaoyong Ma, Mingdong Wang, Chong Cao
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Journal of Control Science and Engineering
Online Access:http://dx.doi.org/10.1155/2016/2712643
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rotor position detection is a prerequisite for achieving good control performance of PMSM. For a PMSM control system based on an optical encoder, it is a difficulty to detect rotor position and achieve R-Signal zero-setting. To solve the problem, a hybrid optical encoder is used in the paper by which a scheme for rotor position detection and R-Signal zero-setting is proposed. This encoder can do absolute and incremental rotor position detection simultaneously; here, the former is used for acquiring imprecise rotor position and the latter is for precise rotor position. Firstly, two detection methods of the encoder are analyzed, and a scheme for rotor position detection is proposed: absolute rotor position is used for motor starting before achieving R-Signal zero-setting; once achieving R-Signal zero-setting, incremental rotor position detection that has high precision is adopted. Then a novel scheme for R-Signal zero-setting is emphatically proposed. Finally, the simulation is conducted. Results show that rotor position detection and R-Signal zero-setting can be achieved by the proposed scheme.
ISSN:1687-5249
1687-5257