Valorization of Historical Urban Spaces for Managed Aquifer Recharge as a Tool to Support Sustainable Urban Development in Warsaw, Poland
In the context of progressing climate change and the increasing frequency of extreme weather events, there is a growing need for effective strategies to mitigate their impacts. One such strategy involves the implementation of tools aimed at sustainable rainfall management at the site of precipitatio...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Urban Science |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2413-8851/9/6/224 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In the context of progressing climate change and the increasing frequency of extreme weather events, there is a growing need for effective strategies to mitigate their impacts. One such strategy involves the implementation of tools aimed at sustainable rainfall management at the site of precipitation. This study focuses on assessing the state of the water environment as a prerequisite for introducing sustainable Managed Aquifer Recharge (MAR) practices in urban areas. The research was conducted in the historic district of Warsaw, Poland. A comprehensive methodological approach was employed, including field and laboratory measurements of soil moisture and electrical conductivity (EC), vadose zone hydraulic conductivity, spring discharge rates, and analytical calculations based on climatic data. These were supplemented by groundwater flow modeling to estimate infiltration rates. The study showed that the infiltration rate in the aquifer is low—only 4.4% of the average annual precipitation. This is primarily due to limited green space coverage and high surface runoff, as well as high potential evaporation rates and low soil permeability in the vadose zone. A positive water balance and infiltration were observed only in December and January, as indicated by increased soil moisture and decreased EC values. A multi-criteria spatial analysis identified priority zones for the installation of retention infrastructure aimed at enhancing effective infiltration and improving the urban water balance. These findings underscore the need for targeted interventions in urban water management to support climate resilience and sustainable development goals. |
|---|---|
| ISSN: | 2413-8851 |