Effect of Graphene and Fe3O4 on the Protection Efficiency of Polyeugenol Conducted Coating for Stainless Steel 316L in NaCl solution
Corrosion is the term for the surface disintegration of metals and alloys in a specific environment. Corrosion processes change a metal alloy's chemical properties as well as its mechanical behaviors. To stop rusting, a novel strategy based on an original material has been applied. By electroc...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
University of Baghdad, College of Science for Women
2024-11-01
|
| Series: | مجلة بغداد للعلوم |
| Subjects: | |
| Online Access: | https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8876 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Corrosion is the term for the surface disintegration of metals and alloys in a specific environment. Corrosion processes change a metal alloy's chemical properties as well as its mechanical behaviors. To stop rusting, a novel strategy based on an original material has been applied. By electrochemically synthesizing polyEugenol(PE)/nanocomposite (Grapgene,Fe3O4) on stainless steel 316L (SS316L), which serves as the working electrode, using the electropolymerization approach, conducting polymer-composites are material types that show promise for anticorrosion. The atomic force microscopy images (AFM) and Fourier transform-infrared spectroscopy analyses were used to evaluate the produced coated polymer. The results showed that, in comparison to the blank SS316L, PE/Nanocomposite and PE offer the metal's best corrosion protection
|
|---|---|
| ISSN: | 2078-8665 2411-7986 |