Bifurcation and Chaotic Behavior of a Discrete-Time SIS Model
The discrete-time epidemic model is investigated, which is obtained using the Euler method. It is verified that there exist some dynamical behaviors in this model, such as transcritical bifurcation, flip bifurcation, Hopf bifurcation, and chaos. The numerical simulations, including bifurcation diagr...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2013-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/2013/705601 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The discrete-time epidemic model is investigated, which is obtained using the Euler method. It is verified that there exist some dynamical behaviors in this model, such as transcritical bifurcation, flip bifurcation, Hopf bifurcation, and chaos. The numerical simulations, including bifurcation diagrams and computation of Lyapunov exponents, not only show the consistence with the theoretical analysis but also exhibit the rich and complex dynamical behaviors. |
---|---|
ISSN: | 1026-0226 1607-887X |