A distributional Hardy transformation

The Hardy's F-transform F(t)=∫0∞Fv(ty)yf(y)dy is extended to distributions. The corresponding inversion formula f(x)=∫0∞Cv(tx)tF(t)dt is shown to be valid in the weak distributional sense. This is accomplished by transferring the inversion formula onto the testing function space...

Full description

Saved in:
Bibliographic Details
Main Authors: R. S. Pathak, J. N. Pandey
Format: Article
Language:English
Published: Wiley 1979-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171279000521
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850160736351813632
author R. S. Pathak
J. N. Pandey
author_facet R. S. Pathak
J. N. Pandey
author_sort R. S. Pathak
collection DOAJ
description The Hardy's F-transform F(t)=∫0∞Fv(ty)yf(y)dy is extended to distributions. The corresponding inversion formula f(x)=∫0∞Cv(tx)tF(t)dt is shown to be valid in the weak distributional sense. This is accomplished by transferring the inversion formula onto the testing function space for the generalized functions under consideration and then showing that the limiting process in the resulting formula converges with respect to the topology of the testing function space.
format Article
id doaj-art-a4c9f9cfae8041fbad9286fce9cb70a5
institution OA Journals
issn 0161-1712
1687-0425
language English
publishDate 1979-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-a4c9f9cfae8041fbad9286fce9cb70a52025-08-20T02:23:04ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251979-01-012469370110.1155/S0161171279000521A distributional Hardy transformationR. S. Pathak0J. N. Pandey1Department of Mathematics, Banaras Hindu University, Varanasi, IndiaDepartment of Mathematics, Carleton University, Ottawa, CanadaThe Hardy's F-transform F(t)=∫0∞Fv(ty)yf(y)dy is extended to distributions. The corresponding inversion formula f(x)=∫0∞Cv(tx)tF(t)dt is shown to be valid in the weak distributional sense. This is accomplished by transferring the inversion formula onto the testing function space for the generalized functions under consideration and then showing that the limiting process in the resulting formula converges with respect to the topology of the testing function space.http://dx.doi.org/10.1155/S0161171279000521integral transformHardy transformHankel transformdistributionsgeneralized functions.
spellingShingle R. S. Pathak
J. N. Pandey
A distributional Hardy transformation
International Journal of Mathematics and Mathematical Sciences
integral transform
Hardy transform
Hankel transform
distributions
generalized functions.
title A distributional Hardy transformation
title_full A distributional Hardy transformation
title_fullStr A distributional Hardy transformation
title_full_unstemmed A distributional Hardy transformation
title_short A distributional Hardy transformation
title_sort distributional hardy transformation
topic integral transform
Hardy transform
Hankel transform
distributions
generalized functions.
url http://dx.doi.org/10.1155/S0161171279000521
work_keys_str_mv AT rspathak adistributionalhardytransformation
AT jnpandey adistributionalhardytransformation
AT rspathak distributionalhardytransformation
AT jnpandey distributionalhardytransformation