Distinct effects of two dominant enteric bacteria on the developmental performance of Spodoptera frugiperda and their association with physiological metabolism

Abstract Enteric bacteria can play an important role in the developmental performance of their insect hosts. The present study revealed that two dominant enteric bacteria, Enterococcus mundtii and Enterococcus casseliflavus, are present in the gut of Spodoptera frugiperda larvae on different host pl...

Full description

Saved in:
Bibliographic Details
Main Authors: Wendou Fu, Peng Wang, Peicong He, Dong Chu
Format: Article
Language:English
Published: Nature Portfolio 2025-03-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-95296-0
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Enteric bacteria can play an important role in the developmental performance of their insect hosts. The present study revealed that two dominant enteric bacteria, Enterococcus mundtii and Enterococcus casseliflavus, are present in the gut of Spodoptera frugiperda larvae on different host plants (maize and rice). However, the role of the two dominant bacteria in S. frugiperda remains poorly understood. To clarify the functions of E. mundtii and E. casseliflavus, the effects on the growth and development of S. frugiperda were studied by separately adding them to an artificial diet with different proportions of yeast. To elucidate the physiological metabolism underlying the differential effects of these two enteric bacteria on the developmental performance of S. frugiperda, transcriptome sequencing was conducted. The results showed that under a rich diet (with 1.85% yeast extract), E. casseliflavus significantly inhibited larval growth and prolonged the pupal stage, under a poor diet (without yeast extract), larval survival rates decreased, but larval body weight increased, and pupal weight significantly increased. However, E. mundtii had no significant effect on S. frugiperda fed a nutritionally rich diet or poor diet. These results indicate that E. casseliflavus exerts a nutrient-dependent effect on life history traits, while E. munditi has little significant impact on the developmental performance of S. frugiperda. Transcriptome sequencing analysis of differential gene expression revealed significant suppression of genes related to physiological metabolism and carbohydrate transport in E. casseliflavus. For instance, the downregulation of UDP-glycosyltransferase (UGT) and amino acid genes is closely associated with the growth and development of Spodoptera frugiperda.These findings provide deeper insights into its impact on the growth and development of S. frugiperda.
ISSN:2045-2322