Families of Planar Orbits in Polar Coordinates Compatible with Potentials

In light of the planar inverse problem of Newtonian Dynamics, we study the monoparametric family of regular orbits <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo&g...

Full description

Saved in:
Bibliographic Details
Main Author: Thomas Kotoulas
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/21/3435
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850197222209093632
author Thomas Kotoulas
author_facet Thomas Kotoulas
author_sort Thomas Kotoulas
collection DOAJ
description In light of the planar inverse problem of Newtonian Dynamics, we study the monoparametric family of regular orbits <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>r</mi><mo>,</mo><mi>θ</mi><mo>)</mo><mo>=</mo><mi>c</mi></mrow></semantics></math></inline-formula> in polar coordinates (where <i>c</i> is the parameter varying along the family of orbits), which are generated by planar potentials <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>=</mo><mi>V</mi><mo>(</mo><mi>r</mi><mo>,</mo><mi>θ</mi><mo>)</mo></mrow></semantics></math></inline-formula>. The corresponding family of orbits can be uniquely represented by the “<i>slope function</i>” <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>γ</mi><mo>=</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><msub><mi>f</mi><mi>θ</mi></msub><msub><mi>f</mi><mi>r</mi></msub></mfrac></mstyle></mrow></semantics></math></inline-formula>. By using the basic partial differential equation of the planar inverse problem, which combines families of orbits and potentials, we apply a <i>new</i> methodology in order to find specific potentials, e.g., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>=</mo><mi>A</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>+</mo><mi>B</mi><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>=</mo><mi>H</mi><mo>(</mo><mi>γ</mi><mo>)</mo></mrow></semantics></math></inline-formula> and one-dimensional potentials, e.g., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>=</mo><mi>A</mi><mo>(</mo><mi>r</mi><mo>)</mo></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>=</mo><mi>G</mi><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></semantics></math></inline-formula>. In order to determine such potentials, differential conditions on the family of orbits <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>r</mi><mo>,</mo><mi>θ</mi><mo>)</mo></mrow></semantics></math></inline-formula> = <i>c</i> are imposed. If these conditions are fulfilled, then we can find a potential of the above form analytically. For the given families of curves, such as ellipses, parabolas, Bernoulli’s lemniscates, etc., we find potentials that produce them. We present suitable examples for all cases and refer to the case of straight lines.
format Article
id doaj-art-a468c1cfe72d4cfdaa08f6947aeae357
institution OA Journals
issn 2227-7390
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-a468c1cfe72d4cfdaa08f6947aeae3572025-08-20T02:13:14ZengMDPI AGMathematics2227-73902024-11-011221343510.3390/math12213435Families of Planar Orbits in Polar Coordinates Compatible with PotentialsThomas Kotoulas0Department of Physics, Aristotle University of Thessaloniki, 541 24 Thessaloniki, GreeceIn light of the planar inverse problem of Newtonian Dynamics, we study the monoparametric family of regular orbits <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>r</mi><mo>,</mo><mi>θ</mi><mo>)</mo><mo>=</mo><mi>c</mi></mrow></semantics></math></inline-formula> in polar coordinates (where <i>c</i> is the parameter varying along the family of orbits), which are generated by planar potentials <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>=</mo><mi>V</mi><mo>(</mo><mi>r</mi><mo>,</mo><mi>θ</mi><mo>)</mo></mrow></semantics></math></inline-formula>. The corresponding family of orbits can be uniquely represented by the “<i>slope function</i>” <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>γ</mi><mo>=</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><msub><mi>f</mi><mi>θ</mi></msub><msub><mi>f</mi><mi>r</mi></msub></mfrac></mstyle></mrow></semantics></math></inline-formula>. By using the basic partial differential equation of the planar inverse problem, which combines families of orbits and potentials, we apply a <i>new</i> methodology in order to find specific potentials, e.g., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>=</mo><mi>A</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>+</mo><mi>B</mi><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>=</mo><mi>H</mi><mo>(</mo><mi>γ</mi><mo>)</mo></mrow></semantics></math></inline-formula> and one-dimensional potentials, e.g., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>=</mo><mi>A</mi><mo>(</mo><mi>r</mi><mo>)</mo></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>=</mo><mi>G</mi><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></semantics></math></inline-formula>. In order to determine such potentials, differential conditions on the family of orbits <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>r</mi><mo>,</mo><mi>θ</mi><mo>)</mo></mrow></semantics></math></inline-formula> = <i>c</i> are imposed. If these conditions are fulfilled, then we can find a potential of the above form analytically. For the given families of curves, such as ellipses, parabolas, Bernoulli’s lemniscates, etc., we find potentials that produce them. We present suitable examples for all cases and refer to the case of straight lines.https://www.mdpi.com/2227-7390/12/21/3435classical mechanicsinverse problem of Newtonian dynamicsmonoparametric families of orbitsseparable potentials in polar coordinatesdynamical systemsintegrable systems
spellingShingle Thomas Kotoulas
Families of Planar Orbits in Polar Coordinates Compatible with Potentials
Mathematics
classical mechanics
inverse problem of Newtonian dynamics
monoparametric families of orbits
separable potentials in polar coordinates
dynamical systems
integrable systems
title Families of Planar Orbits in Polar Coordinates Compatible with Potentials
title_full Families of Planar Orbits in Polar Coordinates Compatible with Potentials
title_fullStr Families of Planar Orbits in Polar Coordinates Compatible with Potentials
title_full_unstemmed Families of Planar Orbits in Polar Coordinates Compatible with Potentials
title_short Families of Planar Orbits in Polar Coordinates Compatible with Potentials
title_sort families of planar orbits in polar coordinates compatible with potentials
topic classical mechanics
inverse problem of Newtonian dynamics
monoparametric families of orbits
separable potentials in polar coordinates
dynamical systems
integrable systems
url https://www.mdpi.com/2227-7390/12/21/3435
work_keys_str_mv AT thomaskotoulas familiesofplanarorbitsinpolarcoordinatescompatiblewithpotentials