Weighted Multiple-Model Neural Network Adaptive Control for Robotic Manipulators with Jumping Parameters
This study addresses the tracking control issue for n-link robotic manipulators with largely jumping parameters. Based on radial basis function neural networks (RBFNNs), we propose weighted multiple-model neural network adaptive control (WMNNAC) approach. To cover the variation ranges of the paramet...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2020/3172431 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|