Integrating Machine Learning and Material Feeding Systems for Competitive Advantage in Manufacturing

In contemporary business environments, manufacturing companies must continuously enhance their performance to ensure competitiveness. Material feeding systems are of pivotal importance in the optimization of productivity, with attendant improvements in quality, reduction of costs, and minimization o...

Full description

Saved in:
Bibliographic Details
Main Authors: Müge Sinem Çağlayan, Aslı Aksoy
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/2/980
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In contemporary business environments, manufacturing companies must continuously enhance their performance to ensure competitiveness. Material feeding systems are of pivotal importance in the optimization of productivity, with attendant improvements in quality, reduction of costs, and minimization of delivery times. This study investigates the selection of material feeding methods, including Kanban, line-storage, call-out, and kitting systems, within a manufacturing company. The research employs six machine learning (ML) algorithms—logistic regression (LR), decision trees (DT), random forest (RF), support vector machines (SVM), K-nearest neighbors (K-NN), and artificial neural networks (ANN)—to develop a multi-class classification model for material feeding system selection. Utilizing a dataset comprising 2221 materials and an 8-fold cross-validation technique, the ANN model exhibits superior performance across all evaluation metrics. Shapley values analysis is employed to elucidate the influence of pivotal input parameters within the selection process for material feeding systems. This research provides a comprehensive framework for material feeding system selection, integrating advanced ML models with practical manufacturing insights. This study makes a significant contribution to the field by enhancing decision-making processes, optimizing resource utilization, and establishing the foundation for future studies on adaptive and scalable material feeding strategies in dynamic industrial environments.
ISSN:2076-3417