A Selective Overview of Quantile Regression for Large-Scale Data

Large-scale data, characterized by heterogeneity due to heteroskedastic variance or inhomogeneous covariate effects, arises in diverse fields of scientific research and technological development. Quantile regression (QR) is a valuable tool for detecting heteroskedasticity, and numerous QR statistica...

Full description

Saved in:
Bibliographic Details
Main Authors: Shanshan Wang, Wei Cao, Xiaoxue Hu, Hanyu Zhong, Weixi Sun
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/5/837
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Large-scale data, characterized by heterogeneity due to heteroskedastic variance or inhomogeneous covariate effects, arises in diverse fields of scientific research and technological development. Quantile regression (QR) is a valuable tool for detecting heteroskedasticity, and numerous QR statistical methods for large-scale data have been rapidly developed. This paper provides a selective review of recent advances in QR theory, methods, and implementations, particularly in the context of massive and streaming data. We focus on three key strategies for large-scale QR analysis: (1) distributed computing, (2) subsampling methods, and (3) online updating. The main contribution of this paper is a comprehensive review of existing work and advancements in these areas, addressing challenges such as managing the non-smooth QR loss function, developing distributed and online updating formulations, and conducting statistical inference. Finally, we highlight several issues that require further study.
ISSN:2227-7390