A Selective Overview of Quantile Regression for Large-Scale Data
Large-scale data, characterized by heterogeneity due to heteroskedastic variance or inhomogeneous covariate effects, arises in diverse fields of scientific research and technological development. Quantile regression (QR) is a valuable tool for detecting heteroskedasticity, and numerous QR statistica...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/13/5/837 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Large-scale data, characterized by heterogeneity due to heteroskedastic variance or inhomogeneous covariate effects, arises in diverse fields of scientific research and technological development. Quantile regression (QR) is a valuable tool for detecting heteroskedasticity, and numerous QR statistical methods for large-scale data have been rapidly developed. This paper provides a selective review of recent advances in QR theory, methods, and implementations, particularly in the context of massive and streaming data. We focus on three key strategies for large-scale QR analysis: (1) distributed computing, (2) subsampling methods, and (3) online updating. The main contribution of this paper is a comprehensive review of existing work and advancements in these areas, addressing challenges such as managing the non-smooth QR loss function, developing distributed and online updating formulations, and conducting statistical inference. Finally, we highlight several issues that require further study. |
|---|---|
| ISSN: | 2227-7390 |