Detecting Short-Notice Cancellation in Hotels with Machine Learning

Cancellations play a critical role in the lodging industry. Considering the time horizon, cancellations placed close to check-in have a significant impact on hoteliers, who must respond promptly for effective management. In recent years, the introduction of personal name records (PNR) has brought in...

Full description

Saved in:
Bibliographic Details
Main Authors: Eleazar C-Sánchez, Agustín J. Sánchez-Medina
Format: Article
Language:English
Published: MDPI AG 2024-07-01
Series:Engineering Proceedings
Subjects:
Online Access:https://www.mdpi.com/2673-4591/68/1/43
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cancellations play a critical role in the lodging industry. Considering the time horizon, cancellations placed close to check-in have a significant impact on hoteliers, who must respond promptly for effective management. In recent years, the introduction of personal name records (PNR) has brought innovative approaches to this domain, but short-notice cancellation prediction is still underdeveloped. Using real PNR data with more than 10k reservations provided by a four-star hotel, this research aims to combine fuzzy clustering with tree decision techniques and random forest under R software version 4.3.3 to forecast cancellations placed close to the entry day, slightly improving the performance of individual techniques.
ISSN:2673-4591