A Model Intercomparison Study of Aerosol‐Cloud‐Turbulence Interactions in a Cloud Chamber: 1. Model Results
Abstract This study presents the first model intercomparison of aerosol‐cloud‐turbulence interactions in a controlled cloudy Rayleigh‐Bénard Convection chamber environment, utilizing the Pi Chamber at Michigan Technological University. We analyzed simulated cloud chamber‐averaged statistics of micro...
Saved in:
| Main Authors: | , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
American Geophysical Union (AGU)
2025-07-01
|
| Series: | Journal of Advances in Modeling Earth Systems |
| Subjects: | |
| Online Access: | https://doi.org/10.1029/2024MS004562 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849245817692487680 |
|---|---|
| author | Sisi Chen Steven K. Krueger Piotr Dziekan Kotaro Enokido Theodore MacMillan David Richter Silvio Schmalfuß Shin‐ichiro Shima Fan Yang Jesse C. Anderson Will Cantrell Dennis Niedermeier Raymond A. Shaw Frank Stratmann |
| author_facet | Sisi Chen Steven K. Krueger Piotr Dziekan Kotaro Enokido Theodore MacMillan David Richter Silvio Schmalfuß Shin‐ichiro Shima Fan Yang Jesse C. Anderson Will Cantrell Dennis Niedermeier Raymond A. Shaw Frank Stratmann |
| author_sort | Sisi Chen |
| collection | DOAJ |
| description | Abstract This study presents the first model intercomparison of aerosol‐cloud‐turbulence interactions in a controlled cloudy Rayleigh‐Bénard Convection chamber environment, utilizing the Pi Chamber at Michigan Technological University. We analyzed simulated cloud chamber‐averaged statistics of microphysics and thermodynamics in a warm‐phase, cloudy environment under steady‐state conditions at varying aerosol injection rates. Simulation results from seven distinct models (DNS, LES, and a 1D turbulence model) were compared. Our findings demonstrate that while all models qualitatively capture observed trends in droplet number concentration, mean radius, and droplet size distributions at both high and low aerosol injection rates, significant quantitative differences were observed. Notably, droplet number concentrations varied by over two orders of magnitude between models for the same injection rates, indicating sensitivities to the model treatments in droplet activation and removal and wall fluxes. Furthermore, inconsistencies in vertical relative humidity profiles and in achieving steady‐state liquid water content suggest the need for further investigation into the mechanisms driving these variations. Despite these discrepancies, the models generally reproduced consistent power‐law relationships between the microphysical variables. This model intercomparison underscores the importance of controlled cloud chamber experiments for validating and improving cloud microphysical parameterizations. Recommendations for future modeling studies are also highlighted, including constraining wall conditions and processes, investigating droplet/aerosol removal (including sidewall losses), and conducting simplified experiments to isolate specific processes contributing to model divergence and reduce model uncertainties. |
| format | Article |
| id | doaj-art-a36cbac8f29f49e9adf604604504f897 |
| institution | Kabale University |
| issn | 1942-2466 |
| language | English |
| publishDate | 2025-07-01 |
| publisher | American Geophysical Union (AGU) |
| record_format | Article |
| series | Journal of Advances in Modeling Earth Systems |
| spelling | doaj-art-a36cbac8f29f49e9adf604604504f8972025-08-20T03:58:41ZengAmerican Geophysical Union (AGU)Journal of Advances in Modeling Earth Systems1942-24662025-07-01177n/an/a10.1029/2024MS004562A Model Intercomparison Study of Aerosol‐Cloud‐Turbulence Interactions in a Cloud Chamber: 1. Model ResultsSisi Chen0Steven K. Krueger1Piotr Dziekan2Kotaro Enokido3Theodore MacMillan4David Richter5Silvio Schmalfuß6Shin‐ichiro Shima7Fan Yang8Jesse C. Anderson9Will Cantrell10Dennis Niedermeier11Raymond A. Shaw12Frank Stratmann13NSF National Center for Atmospheric Research (NSF NCAR) Boulder CO USAUniversity of Utah Salt Lake City UT USAUniversity of Warsaw Warsaw PolandUniversity of Hyogo Kobe JapanUniversity of Notre Dame Notre Dame IN USAUniversity of Notre Dame Notre Dame IN USALeibniz Institute for Tropospheric Research (TROPOS) Leipzig GermanyUniversity of Hyogo Kobe JapanBrookhaven National Laboratory (BNL) Upton NY USAMichigan Technological University Houghton MI USAMichigan Technological University Houghton MI USALeibniz Institute for Tropospheric Research (TROPOS) Leipzig GermanyMichigan Technological University Houghton MI USALeibniz Institute for Tropospheric Research (TROPOS) Leipzig GermanyAbstract This study presents the first model intercomparison of aerosol‐cloud‐turbulence interactions in a controlled cloudy Rayleigh‐Bénard Convection chamber environment, utilizing the Pi Chamber at Michigan Technological University. We analyzed simulated cloud chamber‐averaged statistics of microphysics and thermodynamics in a warm‐phase, cloudy environment under steady‐state conditions at varying aerosol injection rates. Simulation results from seven distinct models (DNS, LES, and a 1D turbulence model) were compared. Our findings demonstrate that while all models qualitatively capture observed trends in droplet number concentration, mean radius, and droplet size distributions at both high and low aerosol injection rates, significant quantitative differences were observed. Notably, droplet number concentrations varied by over two orders of magnitude between models for the same injection rates, indicating sensitivities to the model treatments in droplet activation and removal and wall fluxes. Furthermore, inconsistencies in vertical relative humidity profiles and in achieving steady‐state liquid water content suggest the need for further investigation into the mechanisms driving these variations. Despite these discrepancies, the models generally reproduced consistent power‐law relationships between the microphysical variables. This model intercomparison underscores the importance of controlled cloud chamber experiments for validating and improving cloud microphysical parameterizations. Recommendations for future modeling studies are also highlighted, including constraining wall conditions and processes, investigating droplet/aerosol removal (including sidewall losses), and conducting simplified experiments to isolate specific processes contributing to model divergence and reduce model uncertainties.https://doi.org/10.1029/2024MS004562cloud chambermodel intercomparisonaerosol‐cloud interactionsLESDNSwarm clouds |
| spellingShingle | Sisi Chen Steven K. Krueger Piotr Dziekan Kotaro Enokido Theodore MacMillan David Richter Silvio Schmalfuß Shin‐ichiro Shima Fan Yang Jesse C. Anderson Will Cantrell Dennis Niedermeier Raymond A. Shaw Frank Stratmann A Model Intercomparison Study of Aerosol‐Cloud‐Turbulence Interactions in a Cloud Chamber: 1. Model Results Journal of Advances in Modeling Earth Systems cloud chamber model intercomparison aerosol‐cloud interactions LES DNS warm clouds |
| title | A Model Intercomparison Study of Aerosol‐Cloud‐Turbulence Interactions in a Cloud Chamber: 1. Model Results |
| title_full | A Model Intercomparison Study of Aerosol‐Cloud‐Turbulence Interactions in a Cloud Chamber: 1. Model Results |
| title_fullStr | A Model Intercomparison Study of Aerosol‐Cloud‐Turbulence Interactions in a Cloud Chamber: 1. Model Results |
| title_full_unstemmed | A Model Intercomparison Study of Aerosol‐Cloud‐Turbulence Interactions in a Cloud Chamber: 1. Model Results |
| title_short | A Model Intercomparison Study of Aerosol‐Cloud‐Turbulence Interactions in a Cloud Chamber: 1. Model Results |
| title_sort | model intercomparison study of aerosol cloud turbulence interactions in a cloud chamber 1 model results |
| topic | cloud chamber model intercomparison aerosol‐cloud interactions LES DNS warm clouds |
| url | https://doi.org/10.1029/2024MS004562 |
| work_keys_str_mv | AT sisichen amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT stevenkkrueger amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT piotrdziekan amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT kotaroenokido amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT theodoremacmillan amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT davidrichter amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT silvioschmalfuß amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT shinichiroshima amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT fanyang amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT jessecanderson amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT willcantrell amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT dennisniedermeier amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT raymondashaw amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT frankstratmann amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT sisichen modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT stevenkkrueger modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT piotrdziekan modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT kotaroenokido modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT theodoremacmillan modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT davidrichter modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT silvioschmalfuß modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT shinichiroshima modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT fanyang modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT jessecanderson modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT willcantrell modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT dennisniedermeier modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT raymondashaw modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults AT frankstratmann modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults |