A Model Intercomparison Study of Aerosol‐Cloud‐Turbulence Interactions in a Cloud Chamber: 1. Model Results

Abstract This study presents the first model intercomparison of aerosol‐cloud‐turbulence interactions in a controlled cloudy Rayleigh‐Bénard Convection chamber environment, utilizing the Pi Chamber at Michigan Technological University. We analyzed simulated cloud chamber‐averaged statistics of micro...

Full description

Saved in:
Bibliographic Details
Main Authors: Sisi Chen, Steven K. Krueger, Piotr Dziekan, Kotaro Enokido, Theodore MacMillan, David Richter, Silvio Schmalfuß, Shin‐ichiro Shima, Fan Yang, Jesse C. Anderson, Will Cantrell, Dennis Niedermeier, Raymond A. Shaw, Frank Stratmann
Format: Article
Language:English
Published: American Geophysical Union (AGU) 2025-07-01
Series:Journal of Advances in Modeling Earth Systems
Subjects:
Online Access:https://doi.org/10.1029/2024MS004562
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849245817692487680
author Sisi Chen
Steven K. Krueger
Piotr Dziekan
Kotaro Enokido
Theodore MacMillan
David Richter
Silvio Schmalfuß
Shin‐ichiro Shima
Fan Yang
Jesse C. Anderson
Will Cantrell
Dennis Niedermeier
Raymond A. Shaw
Frank Stratmann
author_facet Sisi Chen
Steven K. Krueger
Piotr Dziekan
Kotaro Enokido
Theodore MacMillan
David Richter
Silvio Schmalfuß
Shin‐ichiro Shima
Fan Yang
Jesse C. Anderson
Will Cantrell
Dennis Niedermeier
Raymond A. Shaw
Frank Stratmann
author_sort Sisi Chen
collection DOAJ
description Abstract This study presents the first model intercomparison of aerosol‐cloud‐turbulence interactions in a controlled cloudy Rayleigh‐Bénard Convection chamber environment, utilizing the Pi Chamber at Michigan Technological University. We analyzed simulated cloud chamber‐averaged statistics of microphysics and thermodynamics in a warm‐phase, cloudy environment under steady‐state conditions at varying aerosol injection rates. Simulation results from seven distinct models (DNS, LES, and a 1D turbulence model) were compared. Our findings demonstrate that while all models qualitatively capture observed trends in droplet number concentration, mean radius, and droplet size distributions at both high and low aerosol injection rates, significant quantitative differences were observed. Notably, droplet number concentrations varied by over two orders of magnitude between models for the same injection rates, indicating sensitivities to the model treatments in droplet activation and removal and wall fluxes. Furthermore, inconsistencies in vertical relative humidity profiles and in achieving steady‐state liquid water content suggest the need for further investigation into the mechanisms driving these variations. Despite these discrepancies, the models generally reproduced consistent power‐law relationships between the microphysical variables. This model intercomparison underscores the importance of controlled cloud chamber experiments for validating and improving cloud microphysical parameterizations. Recommendations for future modeling studies are also highlighted, including constraining wall conditions and processes, investigating droplet/aerosol removal (including sidewall losses), and conducting simplified experiments to isolate specific processes contributing to model divergence and reduce model uncertainties.
format Article
id doaj-art-a36cbac8f29f49e9adf604604504f897
institution Kabale University
issn 1942-2466
language English
publishDate 2025-07-01
publisher American Geophysical Union (AGU)
record_format Article
series Journal of Advances in Modeling Earth Systems
spelling doaj-art-a36cbac8f29f49e9adf604604504f8972025-08-20T03:58:41ZengAmerican Geophysical Union (AGU)Journal of Advances in Modeling Earth Systems1942-24662025-07-01177n/an/a10.1029/2024MS004562A Model Intercomparison Study of Aerosol‐Cloud‐Turbulence Interactions in a Cloud Chamber: 1. Model ResultsSisi Chen0Steven K. Krueger1Piotr Dziekan2Kotaro Enokido3Theodore MacMillan4David Richter5Silvio Schmalfuß6Shin‐ichiro Shima7Fan Yang8Jesse C. Anderson9Will Cantrell10Dennis Niedermeier11Raymond A. Shaw12Frank Stratmann13NSF National Center for Atmospheric Research (NSF NCAR) Boulder CO USAUniversity of Utah Salt Lake City UT USAUniversity of Warsaw Warsaw PolandUniversity of Hyogo Kobe JapanUniversity of Notre Dame Notre Dame IN USAUniversity of Notre Dame Notre Dame IN USALeibniz Institute for Tropospheric Research (TROPOS) Leipzig GermanyUniversity of Hyogo Kobe JapanBrookhaven National Laboratory (BNL) Upton NY USAMichigan Technological University Houghton MI USAMichigan Technological University Houghton MI USALeibniz Institute for Tropospheric Research (TROPOS) Leipzig GermanyMichigan Technological University Houghton MI USALeibniz Institute for Tropospheric Research (TROPOS) Leipzig GermanyAbstract This study presents the first model intercomparison of aerosol‐cloud‐turbulence interactions in a controlled cloudy Rayleigh‐Bénard Convection chamber environment, utilizing the Pi Chamber at Michigan Technological University. We analyzed simulated cloud chamber‐averaged statistics of microphysics and thermodynamics in a warm‐phase, cloudy environment under steady‐state conditions at varying aerosol injection rates. Simulation results from seven distinct models (DNS, LES, and a 1D turbulence model) were compared. Our findings demonstrate that while all models qualitatively capture observed trends in droplet number concentration, mean radius, and droplet size distributions at both high and low aerosol injection rates, significant quantitative differences were observed. Notably, droplet number concentrations varied by over two orders of magnitude between models for the same injection rates, indicating sensitivities to the model treatments in droplet activation and removal and wall fluxes. Furthermore, inconsistencies in vertical relative humidity profiles and in achieving steady‐state liquid water content suggest the need for further investigation into the mechanisms driving these variations. Despite these discrepancies, the models generally reproduced consistent power‐law relationships between the microphysical variables. This model intercomparison underscores the importance of controlled cloud chamber experiments for validating and improving cloud microphysical parameterizations. Recommendations for future modeling studies are also highlighted, including constraining wall conditions and processes, investigating droplet/aerosol removal (including sidewall losses), and conducting simplified experiments to isolate specific processes contributing to model divergence and reduce model uncertainties.https://doi.org/10.1029/2024MS004562cloud chambermodel intercomparisonaerosol‐cloud interactionsLESDNSwarm clouds
spellingShingle Sisi Chen
Steven K. Krueger
Piotr Dziekan
Kotaro Enokido
Theodore MacMillan
David Richter
Silvio Schmalfuß
Shin‐ichiro Shima
Fan Yang
Jesse C. Anderson
Will Cantrell
Dennis Niedermeier
Raymond A. Shaw
Frank Stratmann
A Model Intercomparison Study of Aerosol‐Cloud‐Turbulence Interactions in a Cloud Chamber: 1. Model Results
Journal of Advances in Modeling Earth Systems
cloud chamber
model intercomparison
aerosol‐cloud interactions
LES
DNS
warm clouds
title A Model Intercomparison Study of Aerosol‐Cloud‐Turbulence Interactions in a Cloud Chamber: 1. Model Results
title_full A Model Intercomparison Study of Aerosol‐Cloud‐Turbulence Interactions in a Cloud Chamber: 1. Model Results
title_fullStr A Model Intercomparison Study of Aerosol‐Cloud‐Turbulence Interactions in a Cloud Chamber: 1. Model Results
title_full_unstemmed A Model Intercomparison Study of Aerosol‐Cloud‐Turbulence Interactions in a Cloud Chamber: 1. Model Results
title_short A Model Intercomparison Study of Aerosol‐Cloud‐Turbulence Interactions in a Cloud Chamber: 1. Model Results
title_sort model intercomparison study of aerosol cloud turbulence interactions in a cloud chamber 1 model results
topic cloud chamber
model intercomparison
aerosol‐cloud interactions
LES
DNS
warm clouds
url https://doi.org/10.1029/2024MS004562
work_keys_str_mv AT sisichen amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT stevenkkrueger amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT piotrdziekan amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT kotaroenokido amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT theodoremacmillan amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT davidrichter amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT silvioschmalfuß amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT shinichiroshima amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT fanyang amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT jessecanderson amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT willcantrell amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT dennisniedermeier amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT raymondashaw amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT frankstratmann amodelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT sisichen modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT stevenkkrueger modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT piotrdziekan modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT kotaroenokido modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT theodoremacmillan modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT davidrichter modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT silvioschmalfuß modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT shinichiroshima modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT fanyang modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT jessecanderson modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT willcantrell modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT dennisniedermeier modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT raymondashaw modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults
AT frankstratmann modelintercomparisonstudyofaerosolcloudturbulenceinteractionsinacloudchamber1modelresults