Monotonicity and complete monotonicity of some functions involving the modified Bessel functions of the second kind

In this paper, we introduce some monotonicity rules for the ratio of integrals. Furthermore, we demonstrate that the function $-T_{\nu ,\alpha ,\beta }(s)$ is completely monotonic in $s$ and absolutely monotonic in $\nu $ if and only if $\beta \ge 1$, where $T_{\nu ,\alpha ,\beta }(s)=K_{\nu }^2(s)-...

Full description

Saved in:
Bibliographic Details
Main Authors: Mao, Zhong-Xuan, Tian, Jing-Feng
Format: Article
Language:English
Published: Académie des sciences 2023-01-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.399/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206323776585728
author Mao, Zhong-Xuan
Tian, Jing-Feng
author_facet Mao, Zhong-Xuan
Tian, Jing-Feng
author_sort Mao, Zhong-Xuan
collection DOAJ
description In this paper, we introduce some monotonicity rules for the ratio of integrals. Furthermore, we demonstrate that the function $-T_{\nu ,\alpha ,\beta }(s)$ is completely monotonic in $s$ and absolutely monotonic in $\nu $ if and only if $\beta \ge 1$, where $T_{\nu ,\alpha ,\beta }(s)=K_{\nu }^2(s)-\beta K_{\nu -\alpha }(s)K_{\nu +\alpha }(s)$ defined on $s>0$ and $K_{\nu }(s)$ is the modified Bessel function of the second kind of order $\nu $. Finally, we determine the necessary and sufficient conditions for the functions $s \mapsto T_{\mu ,\alpha ,1}(s)/T_{\nu ,\alpha ,1}(s)$, $s \mapsto (T_{\mu ,\alpha ,1}(s) + T_{\nu ,\alpha ,1}(s))/(2T_{(\mu +\nu )/2,\alpha ,1}(s))$, and $s \mapsto \frac{\mathrm{d}^{n_1}}{\mathrm{d} \nu ^{n_1}} T_{\nu ,\alpha ,1}(s)/\frac{\mathrm{d}^{n_2}}{\mathrm{d} \nu ^{n_2}} T_{\nu ,\alpha ,1}(s)$ to be monotonic in $s\in (0,\infty )$ by employing the monotonicity rules.
format Article
id doaj-art-a34cdd4cfece4495a7337ad74d51ffd5
institution Kabale University
issn 1778-3569
language English
publishDate 2023-01-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-a34cdd4cfece4495a7337ad74d51ffd52025-02-07T11:06:07ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-01-01361G121723510.5802/crmath.39910.5802/crmath.399Monotonicity and complete monotonicity of some functions involving the modified Bessel functions of the second kindMao, Zhong-Xuan0Tian, Jing-Feng1Department of Mathematics and Physics, North China Electric Power University,Yonghua Street 619, 071003, Baoding, P. R. ChinaDepartment of Mathematics and Physics, North China Electric Power University, Yonghua Street 619, 071003, Baoding, P. R. ChinaIn this paper, we introduce some monotonicity rules for the ratio of integrals. Furthermore, we demonstrate that the function $-T_{\nu ,\alpha ,\beta }(s)$ is completely monotonic in $s$ and absolutely monotonic in $\nu $ if and only if $\beta \ge 1$, where $T_{\nu ,\alpha ,\beta }(s)=K_{\nu }^2(s)-\beta K_{\nu -\alpha }(s)K_{\nu +\alpha }(s)$ defined on $s>0$ and $K_{\nu }(s)$ is the modified Bessel function of the second kind of order $\nu $. Finally, we determine the necessary and sufficient conditions for the functions $s \mapsto T_{\mu ,\alpha ,1}(s)/T_{\nu ,\alpha ,1}(s)$, $s \mapsto (T_{\mu ,\alpha ,1}(s) + T_{\nu ,\alpha ,1}(s))/(2T_{(\mu +\nu )/2,\alpha ,1}(s))$, and $s \mapsto \frac{\mathrm{d}^{n_1}}{\mathrm{d} \nu ^{n_1}} T_{\nu ,\alpha ,1}(s)/\frac{\mathrm{d}^{n_2}}{\mathrm{d} \nu ^{n_2}} T_{\nu ,\alpha ,1}(s)$ to be monotonic in $s\in (0,\infty )$ by employing the monotonicity rules.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.399/
spellingShingle Mao, Zhong-Xuan
Tian, Jing-Feng
Monotonicity and complete monotonicity of some functions involving the modified Bessel functions of the second kind
Comptes Rendus. Mathématique
title Monotonicity and complete monotonicity of some functions involving the modified Bessel functions of the second kind
title_full Monotonicity and complete monotonicity of some functions involving the modified Bessel functions of the second kind
title_fullStr Monotonicity and complete monotonicity of some functions involving the modified Bessel functions of the second kind
title_full_unstemmed Monotonicity and complete monotonicity of some functions involving the modified Bessel functions of the second kind
title_short Monotonicity and complete monotonicity of some functions involving the modified Bessel functions of the second kind
title_sort monotonicity and complete monotonicity of some functions involving the modified bessel functions of the second kind
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.399/
work_keys_str_mv AT maozhongxuan monotonicityandcompletemonotonicityofsomefunctionsinvolvingthemodifiedbesselfunctionsofthesecondkind
AT tianjingfeng monotonicityandcompletemonotonicityofsomefunctionsinvolvingthemodifiedbesselfunctionsofthesecondkind