Deterministic control of nanomagnetic spiral trajectories using an electric field

Abstract The intertwined nature of magnetic and electric degrees of freedom in magnetoelectric (ME) materials is well described by ME-coupling theory. When an external electric field is applied to a ME material, the ME coupling induces unique and intriguing magnetic responses. Such responses underpi...

Full description

Saved in:
Bibliographic Details
Main Authors: Samuel H. Moody, Matthew T. Littlehales, Daniel A. Mayoh, Geetha Balakrishnan, Diego Alba Venero, Peter D. Hatton, Jonathan S. White
Format: Article
Language:English
Published: Nature Portfolio 2025-06-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-60288-1
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850137922405138432
author Samuel H. Moody
Matthew T. Littlehales
Daniel A. Mayoh
Geetha Balakrishnan
Diego Alba Venero
Peter D. Hatton
Jonathan S. White
author_facet Samuel H. Moody
Matthew T. Littlehales
Daniel A. Mayoh
Geetha Balakrishnan
Diego Alba Venero
Peter D. Hatton
Jonathan S. White
author_sort Samuel H. Moody
collection DOAJ
description Abstract The intertwined nature of magnetic and electric degrees of freedom in magnetoelectric (ME) materials is well described by ME-coupling theory. When an external electric field is applied to a ME material, the ME coupling induces unique and intriguing magnetic responses. Such responses underpin the utilisation of ME materials across diverse applications, ranging from electromagnetic sensing to low-energy digital memory technologies. Here, we use small angle neutron scattering and discover a novel magnetic response within an archetypal chiral ME material, Cu2OSeO3. We find that the propagation direction of an incommensurate magnetic spiral is deterministically actuated and deflected along controllable trajectories. Furthermore, we predict the emergence of distinct non-linear regimes of spiral-deflection behaviour with external electric and magnetic fields, unlocking innovative devices that leverage controlled and customisable variations in macroscopic polarisation and magnetisation.
format Article
id doaj-art-a348eff899f54d199bbdffe38f5a9e80
institution OA Journals
issn 2041-1723
language English
publishDate 2025-06-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-a348eff899f54d199bbdffe38f5a9e802025-08-20T02:30:42ZengNature PortfolioNature Communications2041-17232025-06-0116111010.1038/s41467-025-60288-1Deterministic control of nanomagnetic spiral trajectories using an electric fieldSamuel H. Moody0Matthew T. Littlehales1Daniel A. Mayoh2Geetha Balakrishnan3Diego Alba Venero4Peter D. Hatton5Jonathan S. White6Laboratory for Neutron Scattering and Imaging (LNS), PSI Center for Neutron & Muon Science, Paul Scherrer Institut (PSI)Department of Physics, Durham UniversityDepartment of Physics, University of WarwickDepartment of Physics, University of WarwickISIS Neutron and Muon Source, Rutherford Appleton LaboratoryDepartment of Physics, Durham UniversityLaboratory for Neutron Scattering and Imaging (LNS), PSI Center for Neutron & Muon Science, Paul Scherrer Institut (PSI)Abstract The intertwined nature of magnetic and electric degrees of freedom in magnetoelectric (ME) materials is well described by ME-coupling theory. When an external electric field is applied to a ME material, the ME coupling induces unique and intriguing magnetic responses. Such responses underpin the utilisation of ME materials across diverse applications, ranging from electromagnetic sensing to low-energy digital memory technologies. Here, we use small angle neutron scattering and discover a novel magnetic response within an archetypal chiral ME material, Cu2OSeO3. We find that the propagation direction of an incommensurate magnetic spiral is deterministically actuated and deflected along controllable trajectories. Furthermore, we predict the emergence of distinct non-linear regimes of spiral-deflection behaviour with external electric and magnetic fields, unlocking innovative devices that leverage controlled and customisable variations in macroscopic polarisation and magnetisation.https://doi.org/10.1038/s41467-025-60288-1
spellingShingle Samuel H. Moody
Matthew T. Littlehales
Daniel A. Mayoh
Geetha Balakrishnan
Diego Alba Venero
Peter D. Hatton
Jonathan S. White
Deterministic control of nanomagnetic spiral trajectories using an electric field
Nature Communications
title Deterministic control of nanomagnetic spiral trajectories using an electric field
title_full Deterministic control of nanomagnetic spiral trajectories using an electric field
title_fullStr Deterministic control of nanomagnetic spiral trajectories using an electric field
title_full_unstemmed Deterministic control of nanomagnetic spiral trajectories using an electric field
title_short Deterministic control of nanomagnetic spiral trajectories using an electric field
title_sort deterministic control of nanomagnetic spiral trajectories using an electric field
url https://doi.org/10.1038/s41467-025-60288-1
work_keys_str_mv AT samuelhmoody deterministiccontrolofnanomagneticspiraltrajectoriesusinganelectricfield
AT matthewtlittlehales deterministiccontrolofnanomagneticspiraltrajectoriesusinganelectricfield
AT danielamayoh deterministiccontrolofnanomagneticspiraltrajectoriesusinganelectricfield
AT geethabalakrishnan deterministiccontrolofnanomagneticspiraltrajectoriesusinganelectricfield
AT diegoalbavenero deterministiccontrolofnanomagneticspiraltrajectoriesusinganelectricfield
AT peterdhatton deterministiccontrolofnanomagneticspiraltrajectoriesusinganelectricfield
AT jonathanswhite deterministiccontrolofnanomagneticspiraltrajectoriesusinganelectricfield